
Confronting Existential Angst (8 Oct 2018)
Paul Pietroski, Rutgers University

[don’t worry…the talk is much shorter than the handout]

1. First Clues: Miss Scarlet, Colonel Mustard, and Davidsonian Adjuncts

(1) Scarlet poked Mustard with a pencil in the library. (1) è (2) & (3)
(2) Scarlet poked Mustard with a pencil. í î
(3) Scarlet poked Mustard in the library. (2) (3)
(4) Scarlet poked Mustard. ì î í ë
(5) Scarlet poked Mustard in the kitchen. (8) (4) (9)
(6) Scarlet poked Mustard with a spoon. î ì ë í
(7) Scarlet poked Mustard in the kitchen with a spoon. (5) (6)
(8) Scarlet poked Mustard with a pencil in the kitchen. ë ì
(9) Scarlet poked Mustard in the library with a spoon. (7) è (5) & (6)
(10) Scarlet poked Mustard with a pencil, and
 Scarlet poked Mustard in the library.

The conjunction of (1) and (7) doesn’t imply (8) or (9). But the conjunction of (8) and (9) implies (2-6).
And while (1) implies (10), (10) doesn’t imply (1).

(11) There was a banker from Dallas who wore a hat. (11) è (12) & (13)
(12) There was a banker from Dallas. í î
(13) There was a banker who wore a hat. (12) & (13)
(14) There was a banker. ì î í ë
(15) There was a banker who wore suspenders. (18) (14) (19)
(16) There was a banker from Manhattan. î ì ë í
(17) There was a banker from Manhattan who wore suspenders. (15) (16)
(18) There was a banker from Dallas who wore suspenders. ë ì
(19) There was a banker from Manhattan who wore a hat. (17) è (15) & (16)
(20) There was a banker from Dallas, and
 there was a banker who wore a hat.

The conjunction of (11) and (17) doesn’t imply (18) or (19).
But the conjunction of (18) and (19) implies (12-16), And while (11) implies (20), (20) doesn’t imply (11).

(11a) $e[Banker(e) & From-Dallas(e) & Wore-a-hat(e)]
(12a) $e[Banker(e) & From-Dallas(e)]
(13a) $e[Banker(e) & Wore-a-hat(e)]
(14a) $e[Banker(e)]

(1a) $e[Past-poke-by-of(e, Scarlet, Mustard) & With-a-pencil(e) & In-the-library(e)]
(2a) $e[Past-poke-by-of(e, Scarlet, Mustard) & With-a-pencil(e)]
(3a) $e[Past-poke-by-of(e, Scarlet, Mustard) & In-the-library(e)]
(4a) $e[Past-poke-by-of(e, Scarlet, Mustard)]

Maybe speakers understand (1-4) as existential generalizations like (1a-4a),
and recognize the indicated inferences as instances of a corresponding valid form: $e[F(e) & Y(e)]
 $e[F(e)]

 2

2. More Existentials: Hr, Thr & vrywhr

(21) a spy poked a soldier
(21a) ex$y[Spy(x) & Past-poke-by-of(e, x, y) & Soldier(y)]
(21b) $e[PastSimple(e) & xy[Spy(x) & Poke-by-of(e, x, y) & Soldier(y)]}

———-—
Factoring out tense highlights further complexity (see, e.g., Reichenbach 1947 Hornstein 1990)

 PastSimple(e) º $p[SpeechTime(p) & Before(e, p)]
 º $p[ReferenceTime(p) & $p¢[Before(p, p¢) & SpeechTime(p¢)] & At(e, p)]
 PastPerfect(e) º $p[ReferenceTime(p) & $p¢[Before(p, p¢) & SpeechTime(p¢)] & Before(e, p)]

 FutureSimple(e) º $p[SpeechTime(p) & After(e, p)]
 º $p[ReferenceTime(p) & $p¢[After(p, p¢) & SpeechTime(p¢)] & At(e, p)]

 FuturePerfect(e) º $p[ReferenceTime(p) & $p¢[After(p, p¢) & SpeechTime(p¢)] & Before(e, p)]
———

(22) a soldier was poked
(22a) ey[Past-poke-of(e, y) & Soldier(y)]
(22b) $e{PastSimple(e) & $y[Poke-of(e, y) & Soldier(y)]}

(23) a spy poked a soldier with a pencil
 (i) ex$y{PastSimple(e) & Spy(x) & Poke-by-of(e, x, y) & Soldier(y) & $p[Withposs(y, p) & Pencil(p)]}
 #(ii) ex$y{PastSimple(e) & Spy(x) & Poke-by-of(e, x, y) & Soldier(y) & $p[Withposs(x, p) & Pencil(p)]}
 (iii) ex$y{PastSimple(e) & Spy(x) & Poke-by-of(e, x, y) & Soldier(y) & $p[Withinstr(e, p) & Pencil(p)]}

 (i¢) $e{PS(e) & $p[By(e, p) & Spy(p)] & $y[Poke-of(e, y) & Soldier(y) & $p[Withposs(y, p) & Pencil(p)]]}
 (iii¢) $e{PS(e) & $p[By(e, p) & Spy(p)] & $y[Poke-of(e, y) & Soldier(y)] & $p[Withinst(e, p) & Pencil(p)]}

(24) a tailor saw a tinker with a tool
 (i) $e{PastSimple(e) & xy[Tailor(x) & See-by-of(e, x, y) & Tinker(y) & $p[Withposs(y, p) & Tool(p)]]}
#(ii) $e{PastSimple(e) & xy[Tailor(x) & See-by-of(e, x, y) & Tinker(y) & $p[Withposs(x, p) & Tool(p)]]}
 (iii) $e{PastSimple(e) & xy[Tailor(x) & See-by-of(e, x, y) & Tinker(y) & $p[Withinstr(e, p) & Tool(p)]]}

 (iv) xy[Tailor(x) & Saw-by-of(e, x, y) & Tinker(y) & $p[Withposs(y, p) & Tool(p)]]
#(v) xy[Tailor(x) & Saw-by-of(e, x, y) & Tinker(y) & $p[Withposs(x, p) & Tool(p)]]
 (vi) xy[Tailor(x) & Saw-by-of(e, x, y) & Tinker(y) & $p[Withinstr(e, p) & Tool(p)]]

(21) a spy poked a soldier
(21a) ex$y[Spy(x) & Past-poke-by-of(e, x, y) & Soldier(y)]
(21b) $e[PastSimple(e) & xy[Spy(x) & Poke-by-of(e, x, y) & Soldier(y)]}
(21c) $e{PastSimple(e) & $p[By(e, p) & Spy(p)] & $p[Poke-of(e, p) & Soldier(p)]} cp. Castañeda	67
 $p[…& $p¢[...e…]] Parsons 90, Schein 93
 Chomsky 95, Kratzer 96
(25) a soldier was poked by a spy

 3

(26) a guest heard a scream in the hall Higginbotham 1983
 $e{PastSimple(e) & $p[By(e, p) & Guest(p)] & Vlach 1983
 (i) $p[Hearing-of(e, p) & Scream(p) & In-the-hall(p)]}
 (ii) $p[Hearing-of(e, p) & Scream(p)] & In-the-hall(e)}

(27) a guest heard a soldier scream in the hall
 $e{PastSimple(e) & $p[By(e, p) & Guest(p)] &
 (i) $p[Hearing-of(e, p) & $p¢[Scream-by(p, p¢) & Soldier(p¢)] & In-the-hall(p)]} two ‘$’s

(ii) $p[Hearing-of(e, p) & $p¢[Scream-by(p, p¢) & Soldier(p¢)]] & In-the-hall(e)} one ‘a’

(28) guest hears soldier scream in hall
(29) spy pokes soldier in library with pencil
——
And don’t forget article-free languages, or Kamp-Heim accounts of English indefinites.
It may be that ‘a’ simply marks nouns as singular (+count, –plural).

 ‘a spy’ ‘a soldier’
 $e{PastSimple(e) & $p[By(e, p) & Spy(p)] & $p[PokeOf(e, p) & Soldier(p)] & maybe
 $p[In(e, p) & Library(p)] & $p[With(e, p) & Pencil(p)]} no ‘$’ is
 ‘a library’ ‘a pencil’ due to ‘a’
——
(30) guests heard screams

$E{PastSimple(E) & $P[By(E, P) & Guests(P)] & $P[Hearings-of(E, P) & Screams(P)]}

(31) guests heard guests scream

$E{PastSimple(E) & $P[By(E, P) & Guests(P)] & $P[Hearings-of(E, P) & Guests-Scream(P)]}

(32) guests heard noise

$E{PastSimple(E) & $P[By(E, P) & Guests(P)] & $P[Hearings-of(E, P) & Noise(P)]}

(33) three guests ate beef

$E{PastSimple(E) & $P[By(E, P) & Three(P) & Guests(P)] & $P[Eatings-of(E, P) & Beef(P)]}

It is often assumed that (30-33) have existential implications of another kind. But let’s come back to this.

(30) guests heard screams
(30a) PP'[Guests(P) & Heard(P, P') & Screams(P')]
(30b) PP'{Plurality(P) &"x:xÎP[Guest(x)] & Heard(P, P') & Plurality(P') & "x:xÎP'[Scream(x)]}

(34) the dogs surrounded the cats
(34a) PP'[The-dogs(P) & Surrounded(P, P') & The-cats(P')]
(34b) PP'{Plurality(P) & "x[(xÎP) º Dog(x)] & Surrounded(P, P') &
 Plurality(P') & "x[(xÎP) º Cat(x)]}

 4

3. Two Common Patterns…Who ordered these?

 | |
F(_) & Y(_) $[D(_, _) & P(_)]

 |______| |______|
 entity/event participant

——
Caveat: if the goal is to characterize natural phenomena regarding linguistic understanding,

 then we’ll probably have to tweak formalism that was invented for different purposes

More specifically: Davidson used Tarski’s ampersand and existential quantifier,

 which allow for expressions like ‘$x[Rxy & Syzw]’,
 in which a two-place sentence is conjoined with a three-place sentence to form
 a four-place sentence that is converted to a three-place sentence by existential closure

Davidsonians (in the 21st century) need a “natural logic analog” of the schema: $e[F(e) & Y(e)]
 $e[F(e)]
——

(35) Some professors watched brown cows eat green grass.

 $E{PastSimple(E) & $p[By(E, P) & Professors(P)] & Watch-brown-cows-eat-green-grass(E)}

(A) The common patterns reflect logically substantive covert constituents
 Watch-brown-cows-eat-green-grass(_) è

 [watch [(sm-events) [[(by) [(sm) [brown (nd) cows]]] (nd) [eat [(sm) [green (nd) grass]]]]]] è

 $F[Watch-of(_, F) & $P[By(F, P) & Brown(P) & Cows(P)] &

 $M[Eat-of(F, M) & Green(M) & Grass(M)]

(B) The common patterns reflect logically substantive modes of combination
 ‘green’ + ‘grass’ è Green(_) & Grass(_)

 ‘eat’ + [green grass] è $M[Eat-of(_, M) & Green(M) & Grass(M)]
 ‘brown’ + ‘cows’ è Brown(_) & Cows(_)

 (‘by’) + [brown cows] è $P[By(_, P) & Brown(P) & Cows(P)]

 [(by) [brown cows]] + [eat [brown grass]] è $P[By(_, P) & Brown(P) & Cows(P)] &
 $M[Eat-of(_, M) & Green(M) & Grass(M)]]

 ‘watch’ + [[(by) [brown cows]] [eat [brown grass]]] è $F[Watch-of(_, F) &
 $P[By(F, P) & Brown(P) & Cows(P)] &

 $M[EatOf(F, M) & Green(M) & Grass(M)]]

 5

It’s a very old idea that negating, disjoining, and conditionalizing are exceptions to a default principle
 that lengthening—in a discourse, or within a sentence—is a way of strengthening.

It’s also a very old idea that universal quantification is a logically special case,

and that existential quantification is the default way of converting a predicate into a thought.

If we grant that modes of combination can be logically substantive,

 it’s no big leap to allow for existential closure as a default clausal operation.

So we should at least consider the following hypothesis (Pietroski 2005, 2018); see Appendix A.

 | | both adjunction
 F(_) & Y(_) $[D(_, _) & P(_)] and complementation
 |______| |______| reflect a combinatorics

 entity/event participant that is not logically innocent

On this view…

—the patterns reflect modes of combination that are employed at an early stage of computing meanings
—this leaves room for later stages of computation (cp. Chomsky 57, Marr 82)
—but not even verb-noun combination is logically innocent

4. Sidebar: Neo-Montagovian Minimalism

It is sometimes assumed/asserted/avowed that

natural modes of composition are no more logically substantive than Function Application

——
Caveat: distinguish Function Application from Fregean Saturation…

 PRECEDES(_, _) + OSCAR è PRECEDES(_, OSCAR) here, all the
 PRECEDES(_, OSCAR) + ZIGGY è PRECEDES(ZIGGY, OSCAR) implications

 SOMETHING[F(_)] + NUMBER(_) è SOMETHING[NUMBER(_)] reflect
 SOMETHING[F(_)] + PRECEDES(_, OSCAR) è SOMETHING[PRECEDES(_, OSCAR)] atomic expressions

But for good reasons, Church didn’t want to rely on Fregean Saturation.

SOMETHING[F(_)] + PRECEDES(_, _) è ??? cp. $X[PRECEDES(X', X)]

 <et, t> + <e, et> è ??? $X[PRECEDES(X, X')]
 ‘$’ is syncategorematic for Tarski

lX.lX'.T º PRECEDES(X', X) + OSCAR è lX'.T º PRECEDES(X', OSCAR) cp. PRECEDES(_, OSCAR)]
 denoter + denoter è denoter ‘_’ is unsaturated for Frege

 6

If natural composition is “logically spare” in this sense,
then the logically substantive patterns presumably reflect lexical items

 —Covert Constituents (see page 4 above)
 —Type Shifting (lexical items are flexible in ways that mimic covert constituents)

||cow|| = lx.T iff Cow(x) ||brown|| = lx.Brown(x)
 = lx.Cow(x) ||brown|| = lF.lx.F(x) & Brown(x)

 ||brown cow|| = ||brown||(||cow||) = lF.le.F(e) & Brown(e)(lx.Cow(x))
 = le.lx.Cow(x)(e) & Brown(e)
 = le. Cow(e) & Brown(e)

 ||tall banker from Dallas who wore a hat|| = ???

 And if we want to explain the network of Davidsonian implications, we can’t just say…

 ||poked Mustard with a pencil|| = lF.With-a-pencil(F)(lx.Poked(x, Mustard))

||poked Mustard in the library|| = lF.In-the-library(F)(lx.Poked(x, Mustard))

Massachusetts Variation: natural modes of composition are no more logically substantive than
 Predicate Modification and Function Application

 ||brown<et> cow<et>|| = le.||brown<et>||(e) & ||cow<et>||(e)
 = le.lx.Brown(x)(e) & lx.Cow(x)(e) = le.Brown(e) & Cow(e)

 ||[with a pencil]<et>|| = le.$x[With(e, x) & Pencil(x)]

 ||[poke<e, et> Mustard<e>]<et>|| = lx.le.Poke-of(e, x)(Mustard) = le.Poke-of(e, Mustard)

||[poke Mustard]<et> [with a pencil]<et>|| = le.||[poke Mustard]<et>||(e) & ||[with a pencil]<et>||(e)
 = le.Poke-of(e, Mustard) & $x[With(e, x) & Pencil(x)]

But how much work does this leave for appeal to Functions and Application, as opposed to just…

 | |
 F(_) & Y(_) $[D(_, _) & P(_)]
 |______| |______|

 entity/event participant

Don’t forget article-free languages, or Kamp-Heim accounts of English indefinites; see page 3 above.

 $p[PokeOf(e, p) & Mustard(p)] & $p[With(e, p) & Pencil(p)]}
 ‘a Mustard’ ‘a pencil’

 7

5. Logical Neutrality, Ontological Price

(30) guests heard screams
(30a) PP'[Guests(P) & Heard(P, P') & Screams(P')]
(30b) PP'{Plurality(P) &"x:xÎP[Guest(x)] & Heard(P, P') & Plurality(P') & "x:xÎP'[Scream(x)]}
(30c) EP$P'{PastSimple(E) & Plurality(P) &"x:xÎP[Guest(x)] &
 Hear-by-of(E, P, P') & Plurality(P') & "x:xÎP'[Scream(x)]}

Really? Is (30) understood as implying that a plurality of guests heard a plurality of screams?
Davidsonians offer arguments that (30) is understood as implying past events of guests hearing screams.
But does this imply—for ordinary speakers—

that some collection of events was a hearing of a collection of screams by a collection of guests?

(34) the dogs surrounded the cats
(34a) PP'[The-dogs(P) & Surrounded(P, P') & The-cats(P')]
(34b) PP'{Plurality(P) & "x[(xÎP) º Dog(x)] & Surrounded(P, P') &
 Plurality(P') & "x[(xÎP) º Cat(x)]}

(36) the logicians specified the sets
(36a) PP'[The-logicians(P) & Specified(P, P') & The-Sets(P')]
(36b) PP'{Plurality(P) & "x[(xÎP) º Logician(x)] & Specified(P, P') &
 Plurality(P') & "x[(xÎP') º Set(x)]}

6. Capitalized Variables Don’t Require Bigger Domains: Boolos 1998

We don’t have to say that each assignment of values to variables assigns exactly one thing to each
variable, and that special entities get assigned to upper-case variables. We can say that each assignment
assigns one or more things to each variable, allowing for special cases: lower case (first-order) variables
impose a constraint of singularity—i.e., the one or more values assigned are not more than one;
upper case (second-order) variables are neutral; but “essentially plural” expressions, like ‘formed a trio’,
require that their one or more values be more than one.

 abcd 0001 0010 0011
 abc abd acd bcd 0100 0101 0110 0111
 ab ac ad bd bc cd 1000 1001 1010 1011
 a b c d 1100 1101 1110 1111

The diagram on the left invites a “lattice” conception of assignments; see Cartwright 1965, Link 1983.
The bottom row is for things in the basic domain. Every other lattice-point indicates an entity in an
extended domain that includes sets or “sums” of basic entities—e.g., {a, b, d} or aÅbÅd. The bottom
row also corresponds to the “singletons” of the extended domain. We can say that each assignment
assigns an entity in the extended domain to each second-order (capitalized) variable. But invoking more
things is not mandatory. We can view ‘abd’ as an assignment of three (basic) entities to an unsingular
variable. Recoding in binary makes this vivid: a = 1; b = 10; c = 100; d = 1000. Then ‘1011’ indicates
for each entity, whether or not it is one of the one or more assigned values: d, yes; c, no; b, yes; a, yes.

 8

Truism: the interpretations differ, even if for many purposes, we can talk either way.

 (37) $X"x[Xx º (x Ï x)] stipulated domain: Fred, Bert (and nothing else)
 facts: Fred Ï Fred; Bert Ï Bert; Fred ¹ Bert

Given the stipulated domain and the set-theoretic construal, (37) is false.
 But given the same domain and the Boolos construal, (37) is true.
While nothing in this domain includes Fred and Bert, there are some things—viz., Fred and Bert—
 such that each thing (in the domain) is one of them if and only if it isn’t selfelemental.
Now suppose that Fred = Æ, Bert = {Æ}, and
 the domain is extended to include all of the other pure Zermelo-Frankl sets (but nothing else).
Given the Boolos construal, (37) is still true, while (37) is still false on the set-theoretic construal.

(38) $x(Fx) º $X"x(Xx º Fx) (trivial on the Boolos construal)
 (39) "X~$x(Xx & ~Xx) (fully general on the Boolos construal)
 (40) ~Xx(Xx & ~Xx)
 (41) ~IG[OneOf(G, I) º ~OneOf(G,I)]

(42) ~sx[(x Î s) & ~(x Î s)] (trivial, but not fully general)
 (43) ~yx[In(x, y) & ~In(x, y)]
———
Empirical Question: is either interpretation better than the other for purposes of characterizing
 how expressions of English (and other natural languages) are understood?

(44) every set is a set Seems trivial, even if you think that nothing includes every set.
(45) {x: x is a set} Í {x: x is a set} Seems wrong if you think that nothing includes every set.

 So prima facie, (45) mischaracterizes the logical form of (44),
 even if this characterization is useful for many purposes.

(46) Some barber shaves all and only
 the barbers who do not shave themselves. Seems wrong once you realize what it implies.

Even if many speakers of English don’t (or can’t) work out the implications of (46),
semanticists should not posit a barber who does so much shaving. And even if semantics is a branch of
cognitive science, semanticists don’t get to posit impossible barbers (or square circles).

(47) every one of the sets is a set Seems trivial, at least if there are some sets
(48) $Y{"x[Yx º Set(x)] & "x:Yx[Set(x)]} Seems as trivial as (47)
(49) $Y:"x[Yx º Set(x)]{"x:Yx[Set(x)]}

Positing settish implications that speakers can’t recognize requires justification; see Schein (1993).

Thought Experiement: imagine a Fregean semanticist sent to Planet Tarski, where (50) implies no
function from cows to truth values—and then to Planet Boolos, where (51) doesn’t imply any sets.

(50) every dot is blue (51) most of the cows are blue

 9

7. No Fact of the Matter Hypotheses: Insert Friday’s talk (“Meaning, Most, and Mass”) here

—weak version: if a theory Q pairs each expression of language L with a logical form l,
 and a theory Q* pairs each expression of L with a logically equivalent logical form l*,
 then Q and Q* provide equally good specifications of what the expressions of L mean

—stronger versions: … and in some cases, logically inequivalent specifications are equally good

 (52) every cow is brown (53) most of the dots are blue
 (52a) "x:Cow(x)[Brown(x)] (53a) #{x: Dot(x) & Blue(x)} > #{x: Dot(x) & ~Blue(x)}
 (52b) "x[Cow(x) É Brown(x)] (53b) #{x: Dot(x) & Blue(x)} >
 (52c) ~$x[Cow(x) & ~Brown(x)] #{x: Dot(x)} – #{x: Dot(x) & Blue(x)}
 (52d) {x: Cow(x)} Í {x: Brown(x)} …
 …

 (21) a spy poked a soldier
 (21a) ex$y[Spy(x) & Past-poke-by-of(e, x, y) & Soldier(y)]
 (21b) $e[PastSimple(e) & xy[Spy(x) & Poke-by-of(e, x, y) & Soldier(y)]}
 (21c) $e{PastSimple(e) & $p[By(e, p) & Spy(p)] & $p[Poke-of(e, p) & Soldier(p)]}
 …

 Why think there’s (often) a fact of matter when the alternatives are logically inequivalent, but not
when the alternatives are logically equivalent? Why is logic special with regard to meaning?

 With regard to meaning, why think that logic is more important than psychology?
 (If you’re an externalist, why think logic is more important than metaphysical possibility?)

How could logic tell us whether or not—or even if there is a fact of the matter about whether or not—
(53) is understood in terms of comparing the number of blue dots to the number of dots that aren’t blue,
as opposed to comparing the number of blue dots to that number subtracted from the number of dots?

How could logic tell us whether or not—or even if there is a fact of the matter about whether or not—
(53) is understood in terms of numbers, as opposed to one-to-one correspondence (and leftovers)?

 (53c) OneToOnePlus[{x: Dot(x) & Blue(x)},{x: Dot(x) & ~Blue(x)}]

How could logic tell us whether or not—or even if there is a fact of the matter about whether or not—
(52) and (53) are understood in terms of sets and truth values, as opposed to some sparer Boolos-y way?

 (52e) lY.lF.T º {x:Y(x) = T} Í {x:F(x) = T}(lx.Cow(x))(lx.Brown(x))
 (52f) $Y{"x[Yx º Cow(x)] & "x:Yx[Brown(x)]}

 (53d) $Y{"x(Yx º Dot(x)) & $X["x(Xx º Yx & Blue(x)) & {#(X) > #(Y) – #(X)}]}

Empirical Questions: does (53) imply cardinalities, sets, truth values, events/states, …

 10

8. Two ways of hearing “Does S1 imply S2”?

(i) Do competent speakers of the relevant language understand S1 and S2 in ways that let these speakers
 recognize that an inference from (the logical form of a thought expressed with) S1
 to (the logical form of a corresponding thought expressed with) S2 is valid?

 (ii) Is every world at which (the content of a thought expressed with) S1 is true
 a world at which (the content of a corresponding thought expressed with) S2 is true?

Does ‘Scarlet poked Mustard in the library with a pencil’ imply that there was a poking of Mustard?
 (i) Yes. It has something to do with conjunct reduction.
 (ii) Yes. But the sentence also implies that there are infinitely many prime numbers.

Does ‘Sadie is a mare’ imply that Sadie is a horse? (Short form: does ‘mare’ imply ‘horse’?)
 (i) Probably. And if so, it probably has something to do with conjunct reduction.
 (ii) Yes. But ‘mare’ also implies ‘mammal such that there are infinitely many prime numbers’.

Does ‘Some odd number precedes every prime number’ have two readings, with distinct implications?
 (i) Yes. And speakers should reject the “surface” reading if they think that 1 is a prime number.
 (ii) No. The two grammatical structures are equivalent given that 2 is the smallest prime.

(54) $x:Odd(x){"y:Prime(y)[Precedes(x, y)]} (55) "y:Prime(y){$x:Odd(x)[Precedes(x, y)]}
———

It’s been 50+ years since Davidson got a ball rolling by trying to describe semantic properties of English
sentences by using off-the-shelf technology—Tarski’s first-order fragment of Frege’s Begriffsschrft—
in clever ways (e.g., by allowing for event variables and putting them to work). Montague and Lewis
quickly adopted more powerful technology—Church’s lambda calculus—which got put to use in many
clever ways. But 60 years ago, Chomsky taught us that there is more than one kind of recursion, and that
adopting powerful technology is not always the way forward in the study of cognition. Recall that the
problem with “finite state automata” was not that they didn’t permit description of every string of lexical
items. On the contrary, it is all too easy to describe every string of lexical items in these terms.

 La
 ➀ à ➁
 Mb
So if the goal is to explain why a system recursively generates some strings but not others, one needs a
different vocabulary that lets one capture the right constraints. Talking about phrase structure grammars
and transformations was far from perfect, but it got a ball rolling. So we might ask what would generate
the patterns discussed here without generating a lot more; see Pietroski (2018).

 | | … LM LM M M M MM
$[D(_, _) & P(_)] 2nd-order quantifiers L L ? ??? M MM

 |______| J 1st-order quantifiers L L L ?? LM LMM
F(_) & Y(_) no quantifiers 0 1 2 3 4 … arbitrary
 |_______| Possible Adicities of Predicates

 11

Appendix A: Typology in Pietroski (2018)

 <M> <D> <M> + <M> è <M> <D> + <M> è <M>

 | |

 F(_) + Y(_) è F(_)^Y(_) D(_, _) + F(_) è $[D(_, _)^F(_)]
 |_____| |_____|
 entity/event participant

Core Operations:
joining two monadic concepts yields joining a dyadic concept with a monadic concept
a monadic concept that applies to __ yields a monadic concept that applies to __
if and only if if and only if __ bears the dyadic relation to some
both of the joined concepts apply to __ thing(s)/stuff that the monadic concept applies to

Example: POKE-OF(_, _) + SOLDIER(_) è $[POKE-OF(_, _)^SOLDIER(_)]
 IN(_, _) + LIBRARY(_) è $[IN(_, _)^LIBRARY(_)]
$[POKE-OF(_, _)^SOLDIER(_)] + $[IN(_, _)^LIBRARY(_)] è $[POKE-OF(_, _)^SOLDIER(_)]^$[IN(_, _)^LIBRARY(_)]

 BY(_, _) + SPY(_) è $[BY(_, _)^SPY(_)]
 PAST-SIMPLE(_) + $[BY(_, _)^SPY(_)] è PAST-SIMPLE(_)^$[BY(_, _)^SPY(_)]

Main Idea: in the simplest case (M-junction), combination indicates restriction;
 in the next simplest case (D-junction), combination still involves restriction
 together with a kind of (variable-free) existential closure;
 this allows for atomic dyadic concepts, but the system only generates monadic concepts.

Appendix B: Limited Quantification, not Generalized Quantifiers (numbers from another handout)

(30) every cow ran
(31) every cow is a cow that ran

(32) {x: Cow(x)} Í {x: Ran(x)} equivalent for ‘Í’ but not for ‘Ê’ or ‘=’
(33) {x: Cow(x)} Í {x: Cow(x) & Ran(x)}

(34) $Y{"x(Yx º Cow(x)) & $X["x(Xx º Ran(x)) & "x:Yx(Xx)]}
(35) $Y{"x(Yx º Cow(x)) & $X["x(Xx º Yx & Ran(x)) & "x:Yx(Xx)]}

(13d) $Y{"x(Yx º Dot(x)) & $X["x(Xx º Yx & Blue(x)) & {#(X) > #(Y) – #(X)}]}

(36) every cow which ran OK as a restricted quantifier, but not as a sentence
(37) *[S [every cow]QP [which ran]RC]
(38) [<t> [every cow]<et, t> [which ran]<et>] should be OK, or at least comprehensible, as a sentence

(39) Finn chased every cow
(40) $Y{"x(Yx º Cow(x)) & But how do we get
 $X["x(Xx º Yx & Chased(Finn, x)) & "x:Yx(Xx)]} (40) from (39)?

 12

First Step: Treat Sentences as Polarized Predicates

 (41) Finn chased Bess
 (42) ||[S Finn chased Bess]||A = T iff CHASED(FINN, BESS)
 (43) Val(_, [S Finn chased Bess])A iff CHASED(FINN, BESS)

Instead of saying that (41) denotes a truth value, we can say that (41) applies to everything or nothing,
depending on whether or not Finn chased Bess. On this Tarskian view, if Finn chased Bess, then
(41) applies to you, me, Finn, Bess, the number six, etc. (In general: if P, then we’re all such that P.)
Similarly, we can say that relative to any particular assignment, (44) applies to everything or nothing.

 (44) Finn chased it1
 (45) Val(_, [S Finn chased it1])A iff CHASED(FINN, A[1])

In which case, relative to each assignment A, (44) applies to A[1]—and everything else—if and only if
Finn chased A[1]. So we don’t need truth values, together with lambda abstraction, to accommodate
relative clauses. Given (46), ‘which Finn chased’ applies to an entity if and only if Finn chased it.

(46) Val(_, [which1 [S Finn chased t1]])A iff
for some/the assignment A* such that =(_, A*[1]) & A* is otherwise just like A,

Val(A*[1], [S Finn chased t1])A*

When we’re not worrying about truth values or sets, we can replace (46) with (47).

 (47) ||which1 [S Finn chased t1]||A = lx. T iff CHASED(FINN, x)

But (47) is no simpler than (46). Relative to any assignment A, ‘lx. T iff CHASED(FINN, x)’ is shorthand
for the following mouthful: the smallest function that maps each entity e to T or ^ depending on whether
or not ‘CHASED(FINN, x)’ is satisfied by the ‘x’-variant of A that assigns e to ‘x’

Though before trying to run without sets/functions, let’s be clear that we can walk without truth values,
at least if we assume that quantifiers displace as in (48).

 (48) [S [everyQ cowN]Q1 [S Finn chased t1]]

And for these purposes, let’s not worry about how CHASED(FINN, A[1]) gets spelled out eventishly.

 (49) $e{SIMPLE-PAST(E) & CHASE(E, FINN, A[1])}
(49a) $e{SIMPLE-PAST(E) & BY(E, FINN) & CHASE-OF(E, A[1])}

 (49b) $_{SIMPLE-PAST(_)^$[BY(_, _)^=(_, FINN)]^$[CHASE-OF(_, _)^=(_, A[1])]}
(49c) Ý{SIMPLE-PAST(_)^$[BY(_, _)^=(_, FINN)]^$[CHASE-OF(_, _)^=(_, A[1])]}

 where Ý{F(_)} is a polarized predicate that applies to everything or nothing,
 depending on whether or not F(_) applies to something.

 13

1. Val(<a, b>, everyQ)A iff a Ê b [axiom]
2. Val(_, cowN)A iff COW(_) [axiom]

3. Val(a, […Q …N]Qi)A iff $b[Val(<a, b>, …Q)A & b = {x: Val(x, …N)A}] [axiom]

4. Val(a, [everyQ cowN]Qi)A iff a Ê {x: COW(x)} [1, 2, 3]

5. Val(_, [S […]Qi [S ...ti…]])A iff

 $a[Val(a, […]Qi)A & a = {x: $A*[A*[i] = x & A* »i A* & Val(A*[i], [S ...ti…])A*]}] [axiom, cp. 46]

6. Val(_, [S Finn chased t1])A* iff CHASED(FINN, A*[1]) [Appendix A]

7. Val(_, [S [everyQ cowN]Q1 [S Finn chased t1]])A iff
 $a[a Ê {x: COW(x)} & a = {x: $A*[A*[1] = x & A* »1 A* & CHASED(FINN, A*[1])]}] [4, 5, 6]
 = {x: $A*[A* »1 A* & CHASED(FINN, x)]}] cp. Larson &
 = {x: CHASED(FINN, x) }] Segal (1995)
7a. Val(_, [S [everyQ cowN]Q1 [S Finn chased t1]])A iff {x: CHASED(FINN, x)} Ê {x: COW(x)} [7, abbreviated]

Second Step: Treat Quantifiers as Plural Predicates
Rewrite the axiom for ‘every’: Val(O, everyQ)A iff XY[Externals(O, X) & Internals(O, Y) & "x:Yx(Xx)]
For any ordered pair <e, i>—a.k.a. {e, {e, i}}—e is the pair’s external element.
But we don’t have to say that the Os are pairs of sets that meet a certain set-theoretic condition.
Let the Os be pairs of entities that meet a plural condition: each of their Internals is one of their Externals.

 EVERY(O) iff XY{"x(Xx º $o:Oo[EXTERNAL(o, x)]) & "y(Yy º $o:Oo[INTERNAL(o, y)]) & "x:Yx(Xx)}
 XY{ EXTERNALS(O, X) & INTERNALS(O, Y) & "x:Yx(Xx)}

Now we can rewrite the derivation above without assuming an extended domain that includes a set of cows.

1. Val(O, everyQ)A iff EVERY(O) [axiom]

2. Val(_, cowN)A iff COW(_) [axiom]

3. Val(O, […Q …N]Qi)A iff Val(O, …Q)A & $Y[INTERNALS(O, Y) & "y(Yy º Val(y, …N)A)] [axiom]

4. Val(O, [everyQ cowN]Q1)A iff EVERY(O) & $Y[INTERNALS(O, Y) & "y(Yy º COW(y))] [1, 2, 3]

4a. Val(O, [everyQ cowN]Q1)A iff EVERY(O) & iY:Cows(Y)[INTERNALS(O, Y)] [4, abbreviated]

5. Val(_, [S […]Qi [S ...ti…]])A iff $O{Val(O, […]Qi)A & $X[EXTERNALS(O, X) &

 "x(Xx º $A*[A*[i] = x & A* »i A* & Val(A*[i], [S ...ti…])A*])} [axiom, cp. (46)]

6. Val(_, [S Finn chased t1])A* iff CHASED(FINN, A*[1])) [Appendix A]

7. Val(_, [S [everyQ cowN]Q1 [S Finn chased t1]])A iff
 $O{EVERY(O) & iY:Cows(Y)[INTERNALS(O, Y)] &
 $X[EXTERNALS(O, X) & "x(Xx º $A*[A*[1] = x & A* »1 A* & CHASED(FINN, A*[1])])]} [4, 5, 6]

 º $A*[A* »1 A* & CHASED(FINN, x)])]}
 º CHASED(FINN, x))]}
7a. Val(_, [S [everyQ cowN]Q1 [S Finn chased t1]])A iff
 $O{EVERY(O) & iY:Cows(Y)[INTERNALS(O, Y)] & iX:CHASED(FINN, X)[EXTERNALS(O, X)]} [7, abb.]

 14

But this still doesn’t capture the restricted/conservative character of quantificational determiners.
The axiom for ‘every’ allows for ordered pairs such that some of their external elements
 are not among their internal elements. (Finn may have chased many things that are not cows.)
And the external/sentential argument of ‘every’ was treated as if it were the relative clause in (50).

 (50) every cow which Finn chased

That’s almost as bad as appealing to quantifier raising and the idea that ‘every cow’ is of type <et, t>.
But the goal is not to recode this idea, with all its warts, a little more austerely. The “mimimalist” hope
is that aiming for austerity will help identify which aspects of our notation do the explanatory work.

We want to know why quantificational determiners “live on” their internal arguments;

cp. Barwise & Cooper (1981), Higginbotham & May (1981), Keenan & Stavi (1986)
With regard to (48), we want to explain the semantic asymmetry between cowN and [S Finn chased t1].

(48) [S [everyQ cowN]Q1 [S Finn chased t1]]

So if the displaced quantifier recombines with the sentence from which it was displaced, maybe we
don’t want a semantics that erases this grammatical asymmetry as in (51); cp. Heim & Kratzer (1998).

 (51) [<t> [every<et, <et, t>> cow<et>]<et, t> [<et> 1 [<t> Finn chased t1]]]

Maybe we should return to (40)—a claim about the cows, with no reference to the things Finn chased…

 (40) $Y{"x(Yx º Cow(x)) & $X["x(Xx º Yx & Chased(Finn, x)) & "x:Yx(Xx)]}
 (40a) iY:Cows(Y){$X["x(Xx º Yx & Chased(Finn, x)) & "x:Yx(Xx)]}

… and no reference to any relation exhibited by the (set of) cows and the (set of) things Finn chased.

So let me end with two suggestions—perhaps notational variants—about how to get from (48) to (40).

 (52) Val(O, […Q …N]Qi)A iff

 Val(O, …Q)A & $Y[Internals(O, Y) & "y(Yy º Val(y, …N)A) & ExternalsAreInternals(O)]

 (53) Val(_, [S […Q …N]Qi [S ...ti…]], A) iff

 $O{Val(O, […]Qi)A & $X[Externals(O, X) &

 "x(Xx º $A*:x = A*[i] & Val(A*[i], …N)A* & A* »i A & {Val(A*[1], [S ...ti…])A*})}

We can deny that the Os pair their internal entities with independently selected external entities.
We need not (and should not) say that quantificational determiners express second-order relations.
The external/sentential argument—a polarized predicate containing a trace of the displaced quantifier—
is used to make a secondary selection from values of the internal/nominal argument. On this view, the
combinatorics ensures conservativity. So while identity is not a conservative second-order relation, we
can still specify the meaning of ‘every’ with an identity condition, as opposed to an inclusion condition.

 Val(O, everyQ)A iff YX[Internals(O, Y) & Externals(O, X) & "x(Yx º Xx)]

 $Y[Internals(O, Y) & Externals(O, Y)]
 iY:Internals(O, Y)[Externals(O, Y)]

 15

Appendix C: Comparing Axioms and Derivations for ‘Finn chased it’

a. Val(_, -dT)A iff PAST-SIMPLE(_) a. ||-dT||A = le.T iff PAST-SIMPLE(e)
b. Val(_, F-FinnN)A iff =(_, R-FINN) b. ||F-FinnN||A = R-FINN

 Proper nouns are probably predicative, and they’re surely not atomic expressions of type <e>.

c. for any index i, Val(_, ti)A iff =(_, A[i]) c. for any index i, ||ti||A = A[i]
d. Val(_, [chaseV …])A iff d. ||chaseV||A = lx.le.T iff CHASE-OF(e, x)
 $[CHASE-OF(_, _)^Val(_, …)A]
e. Val(_, [byv …])A iff $[BY(_, _)^Val(_, …)A] e. ||byv||A = lF.lx.le.T iff BY(e, x) & F(e) = T
f. Val(_, […<M> …<M>*])A iff f. ||[…<et> …<et>*]||A = lx.T iff
 Val(_, […<M>])A^Val(_, …<M>*)A ||…<et>||A = T & ||…<et>*||A = T

 g. ||[…<a,b> …<a>]||A = ||…<a,b>||A(||…<a>||A)

h. Val(_, [S […]])A iff for some e, Val(e, …)A h. ||[S […]]||A = T iff for some e, ||…||A(e) = T
——
 S (10) S (10)
 T (9) T (9)
 / \ / \
 (8) -dT v (7) (8)-dT v (7)
 / \ / \
 (6) v V (3) (6) F-FinnN v (5)
 / \ / \ / \
F-FinnN byv chaseV t1 (4) byv V(3)
 (4) (5) (2) (1) / \
 (2) chaseV t1 (1)
Val(_, 1)A iff =(_, A[1]) ||1||A = A[1]
Val(_, 3)A iff $[CHASE-OF(_, _)^=(_, A[1])] ||2||A = lx.le.T iff CHASE-OF(e, x)
 ||3||A = le.T iff CHASE-OF(e, A[1])
Val(_, 4)A iff =(_, R-FINN) ||4||A = lF.lx.le.T iff BY(e, x) & F(e) = T
Val(_, 6)A iff $[BY(_, _)^=(_, R-FINN)] ||5||A = lx.le.T iff BY(e, x) & CHASE-OF(e, A[1])
Val(_, 7)A iff $[CHASE-OF(_, _)^=(_, A[1])]^ ||6||A = R-FINN
 $[BY(_, _)^=(_, R-FINN)] ||7||A = le.T iff BY(e, R-FINN) & CHASE-OF(e, A[1])
Val(_, 8)A iff PAST-SIMPLE(_) ||8||A = le.T iff PAST-SIMPLE(e)
Val(_, 9)A iff PAST-SIMPLE(_)^Val(_, 7)A ||9||A = le.T iff PAST-SIMPLE(e) & ||7||A(e) = T
Val(_, 10)A iff for some e, Val(_, 9)A ||10||A = for some e, ||9||A(e) = T
——
You can blame tense for the matrix $-closure: ||-dT||A = lF.$e{PastSimple(e) & F(e)}.
But this assigns two jobs to one morpheme: quantification and restriction.
And the restriction is already complicated. Moreover, (6-9) suggest that $-closure doesn’t require tense.

 16

Appendix D: Composition as De-Abstraction…Bait and Switch

(1) Finn chased Bess
(1a) [Finn<e> [chased<e, et> Bess<e>]<et>]<t>

What about tense and adverbial modifiers?

(1b) [… [Finn<e> [chase<e, <e, et>> Bess<e>]<e, et>]<et> …]<t>

What about passives and other motivations for “severing” external arguments?

(1c) [… [Finn<e> [__<et, <e, et>> [chase<e, et>> Bess<e>]<et>]<e, et>]<et> …]<t>

Are there any simple cases that motivate the standard typology, in the way that (1) was supposed to?

(2) chase Bess
(2a) [chase<e, et> Bess<e>]<et>

Are names atomic expressions of type <e>? And is (3) as complicated as (3a)? Or is this just a game?

(3) chase cows
(3a) [[(sm)<et, <et, t>> [cow<et> s<et, et>]<et>]<et, t> [1 [… [chase<e, et> t1<e>]<et> …]<t>]<et>]<t>

References (Very Incomplete…for more, see the list in Pietroski 2018)
Barwise, J. and Cooper, R. (1981). Generalized Quantifiers and Natural Language.

Linguistics and Philosophy 4:159-219.
Boolos, G. (1998). Logic, Logic, and Logic. Cambridge, MA: Harvard University Press.
Cartwright, H. (1965). Classes, Quantities, and Non-Singular Reference. Dissertation, University of Michigan
Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.
—(1995): The Minimalist Program. Cambridge, MA: MIT Press.
Davidson, D. (1967a). The Logical Form of Action Sentences. Reprinted in Davidson 1980.
—(1980). Essays on Actions and Events. Oxford: Oxford University Press.
Heim, I. (1982). The Semantics of Definite and Indefinite Noun Phrases. Dissertation, U-Mass Amherst.
Heim, I. & Kratzer, A. (1998). Semantics in Generative Grammar. Oxford: Blackwell.
Higginbotham, J. (1983). The Logical form of Perceptual Reports. Journal of Philosophy 80:100-27.
Hornstein, N. (1990). As Time Goes By: tense and universal grammar. Cambridge, MA: MIT Press.
Kamp, H. (1981). A Theory of Truth and Semantic Representation.
Kratzer, A. (1996). Severing the External Argument from its Verb. In J. Rooryck and L. Zaring
 (eds.), Phrase Structure and the Lexicon. Dordrecht (Kluwer Academic Publishers)
Lidz, J. et.al. (2011). Interface Transparency and the Psychosemantics of ‘Most’.
 Natural Language Semantics 19:227-56.
Pietroski, P. (2005). Events and Semantic Architecture. Oxford: Oxford University Press.
—(2018). Conjoining Meanings: Semantics without Truth Values. Oxford: Oxford University Press.
Ramsey, F. (1927). Facts and Propositions. Proceedings of the Aristotelian Society (supp) 7:153-170.
Reichenbach, H. (1947). Elements of Symbolic Logic. New York: Macmillan & Co.
Rescher, N. (1962). Plurality Quantification. Journal of Symbolic Logic 27:373-4.
Schein, B. (1993). Plurals and Events. Cambridge, MA: MIT Press.
—(2017). And: Conjunction Reduction Redux. Cambridge, MA: MIT Press.
Taylor, B. (1985). Modes of Occurrence. Oxford: Blackwell.
Vlach, F. (1983). On Situation Semantics for Perception. Synthese 54:129-52.
Williams, A. (2015). Arguments in Syntax and Semantics. Cambridge: CUP.

