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0. Introduction

This paper is concerned with the algebraic K-theory of C�-algebras, that is, when
they are considered purely algebraically as rings, forgetting the topology. This is a
subject about which relatively little is known, though important contributions have
been made by Higson [Hig], Karoubi [K2], Suslin [S], Fischer [F] and Prasolov
[Pr], and Suslin–Wodzicki [SW]. The topological K-theory of operator algebras,
on the other hand, is well studied, and is the source of many of the important
advances that have been made in operator algebras in recent years. The natural tool
in the study of algebraic K-theory of C�-algebras, or more generally of Banach
algebras, is therefore the comparison map (see Theorem 1.1) between these two
theories, and the most interesting results say roughly that this map is in some
sense close to being an isomorphism. Any result of this type may be viewed as a
K-theoretic sort of automatic continuity theorem. The most famous such theorem
(though also the least interesting) is the one that says that K0 is the same, whether
computed in the algebraic or the topological category.

One might legitimately ask the purpose of studying purely algebraic invariants
of topological objects such as C�-algebras, especially since there is no obvious
reason to expect them to be well behaved. One might therefore give the following
two-fold motivation:
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76 JONATHAN ROSENBERG

(1) In cases where the comparison map is close to an isomorphism, it shows that
operator algebras are quite well behaved from a purely algebraic point of view.
For example, we will see in Section 3 that commutative C�-algebras are K-
regular, in other words, behave from theK-theoretic point of view like regular
rings (Noetherian rings of finite homological dimension).

(2) In cases where the comparison map is not always an isomorphism, it suggests
ways to define new invariants of operator algebras, with many of the properties
of topologicalK-groups, but with a richer structure. For example, the negative
algebraic K-theory of commutative C�-algebras recaptures connective K-
theory (Theorem 2.3 below), a more subtle invariant of spaces than periodic
K-theory. (PeriodicK-theory can be recovered from connectiveK-theory, but
not vice versa.) And algebraic K-theory, unlike topological K-theory, does
not always commute withC�-algebraic direct limits (though it commutes with
uncompleted direct limits).

In addition, there are some problems in operator algebra theory (such as those
related to the lifting of nilpotent elements [OP]) that naturally involve algebraic
K-theory and not topological K-theory. The results of this paper might be useful
for such problems.

Section 1 of the paper summarizes various facts about algebraic K-theory of
operator algebras that are already in the literature or known to the experts, though
perhaps hard to locate in the form we will need. Section 2 introduces a number
of conjectures about negative K-theory and K-regularity. One of the main results,
proving one of these conjectures for commutativeC�-algebras, takes up Section 3.
Section 4 concerns extensions and generalizations of the Fischer–Prasolov Theorem
comparing algebraic and topological K-theory with finite coefficients. Section 5
contains a few interesting facts about polynomial rings over commutative C�-
algebras, which were discovered in the course of another attack on the problems
studied in Sections 2 and 3. These might serve as prototypes for additional studies
of rings of this sort.

Notation. Many of the results of this paper hold for operator algebras over both
R and C . To avoid having to write ‘R or C ’ over and over again, we use the symbol
F to denote the field of scalars, in situations where the arguments work over both
R and C . The algebra of compact operators on an infinite-dimensional separable
Hilbert space over F is denoted as usual by K. If A is a ring (say with unit), K (A)
will denote its (nonconnective) algebraic K-theory spectrum, whose homotopy
groups are the Quillen K-groups in positive degrees and the Bass negative K-
groups in negative degrees. Various constructions of this spectrum are known, for
example those of Gersten [Ger], of Karoubi [K1], or of Wagoner [Wag], and all
the constructions are known to be naturally equivalent [PeW, xx5–6]. The algebraic
K-groups of A with finite coefficients are defined to be the homotopy groups of
the smash-product of K (A) with a Moore space. If A is an F-algebra without unit,
A+ will denote its unitalization A + F � 1. If A is a Banach algebra, K top(A) will
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THE ALGEBRAIC K-THEORY OF OPERATOR ALGEBRAS 77

denote the topological K-theory spectrum of A, whose homotopy groups are the
topological K-groups. (This is a nonconnective spectrum constructed out of the
classifying space BGLtop(A) for the general linear group, viewed as a topological
group.) Bott periodicity gives a natural equivalence of this spectrum with its 8-fold
or double loop space (in the real and complex cases, respectively).

1. Review of Known Facts

In this section, we review a number of known facts about algebraic K-theory
of C�-algebras. Some of these are explicitly in the literature and others are only
implicitly there but known to the experts. However, even in the latter case, we claim
no great originality for anything in this section.

The most fundamental fact of all, which we will use over and over, is the
following.

THEOREM 1.1. Given a unital Banach algebraA (over F = R or C ), there is a map
of spectra K (A) ! K

top(A) which is functorial in A, which induces the identity
map K0(A) ! K

top
0 (A) = K0(A), and which induces the map BGLdisc(A)+ !

BGLtop(A) corresponding to the identity map GLdisc(A) ! GLtop(A). Similarly,
if I is a (2-sided) ideal in A, there is a functorial map K (A; I)! K

top(A; I) with
similar properties.

Proof. This fact is well known and was stated without proof in [Rol, x2.1], but we
review the argument. Certainly the identity map of topological groups GLdisc(A)!
GLtop(A) induces a map of classifying spaces BGLdisc(A)! BGLtop(A) and then
a functorial (infinite loop) map of infinite loop spaces

K0(A) � BGLdisc(A)+ ! K0(A)� BGLtop(A):

It is necessary to ‘deloop’ this map. This can be done inductively, using the identifi-
cation of the Laurent polynomial ringA[t; t�1]with a dense subring ofCC (S1)b
A
(in the complex case) or with a dense subring of C(S�1)b
A in the real case. Hereb
 denotes ‘completed tensor product,’ with respect to the sup norm for functions
S1 ! AC , and the notationC(S�1) comes fromKR-theory, and refers to the alge-
bra of functions in CC (S1) satisfying f(z) = f(z). (Identify t with the function
z on the unit circle S1 in the complex plane, and use Stone–Weierstrass.) By Bott
periodicity for KU and KR, K top (CC (S1)b
A) and K

top (C(S�1)b
A) each split
as K top(A)��K top(A), and the splitting is compatible with the Bass–Heller–Swan
splitting of K (A[t; t�1]) as K (A) � �K (A) � Nil-terms. So (writing things out
only for the complex case, for simplicity) consider the diagram

K0(A[t; t
�1])� BGLdisc(A[t; t�1])+ - K0(C

C (S1)b
A)� BGLtop(CC (S1)b
A)

‘
�1’(K0(A)� BGLdisc(A)+)

?

- ‘
�1’(K0(A)� BGLtop(A));

?
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78 JONATHAN ROSENBERG

where the vertical maps project onto the appropriate summand. The induced dashed
arrow at the bottom makes it possible to deloop once. Then continue by induction.
The relative case is done similarly. 2

THEOREM 1.2 [SW, Theorem 10.1 and Corollary 10.4]. Any Banach algebra A
(over F = R or C ) with left or right bounded approximate unit, and in particular any
C�-algebra, isH-unital and satisfies excision in algebraicK-theory. (In particular,
if A is non-unital and is embedded as an ideal in a larger Banach algebra B,
the relative K-theory spectrum K (B; A) is naturally equivalent to K (A+ ; A),
regardless of the choice of B, hence it makes sense to call it theK-theory spectrum
K (A) of A).

THEOREM 1.3 [SW]. Any Banach algebra A (over F = R or C ) with bounded
approximate unit, and in particular any C�-algebra, satisfies excision for N rK-
theory for any r > 1.

Proof. This follows from Theorem 1.2, from another application of the main
theorem of [SW], and from [SW, Theorem 7.10], which implies that any polynomial
ring over an H-unital algebra is again H-unital. 2

THEOREM 1.4. Let A be a stable C�-algebra (over F = R or C ) (that is, a C�-
algebra for which A �= Ab
K). Then the map K (A) ! K

top(A) of Theorem 1.1 is
an equivalence.

Proof. In [SW], this is listed as Theorem 10.9, but only for the complex case and
for the connective K-theory spectra. However, the dimension-shifting argument
in the proof of [Hig, Theorem 5.3.3], which showed that if A is a stable �-unital
C�-algebra with multiplier algebraM(A), then

Ki(M(A); A)! K
top
i (M(A); A)

is an isomorphism for i > 0, works equally well the other way to give similar
isomorphisms for i < 0. (The stability plays the essential role of guaranteeing
Bott periodicity for the algebraic K-theory groups; see [K2] for an ‘explanation.’)
Hence under these hypotheses, K (M(A); A) ! K

top(M(A); A) is an equivalence
of spectra. Because of the excision property of Theorem 1.2, it is enough to prove
the Theorem for algebras of the form Ab
K with A unital, and such stable algebras
are �-unital. So the result for the complex case follows from Higson’s work and
from Theorem 1.2. The real case requires redoing the arguments of [Hig], but there
is no essential change. Indeed, Higson’s key tool, the fact that a stable, split exact
functor is homotopy invariant, works in the real case also, because it is based on the
foundations of Kasparov’s KK-theory, which are also available in the real case.2

THEOREM 1.5. Any stable C�-algebra A (over either R or C ) is Ki-regular for
all i.
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Proof. This is proved in [Hig, Lemma 6.3.12] for i = 1, but exactly the same
proof works for all i, once one adds Theorem 1.2 (which was not available at the
time [Hig] was written). 2

The following purely operator-theoretic result will also be of interest. For reasons
to be explained later, it gave the original motivation for the results of x2 and x3
below.

THEOREM 1.6 [OP, Theorem 6.7]. Let A be any C�-algebra (over C ) and let I be
a closed ideal in A. Then any element y 2 A=I satisfying yn = 0 can be lifted to
an element x 2 A with xn = 0.

Remark. The same statement is also true for real C�-algebras, as one can see
using very slight modifications in the argument.

In general, higher algebraic K-theory of C�-algebras differs considerably from
topological K-theory. However, there is a remarkable result using K-theory with
finite coefficients.

THEOREM 1.7 ([S] in the case of R and C ; [F] and [P] in general). Let A be a
commutative C�-algebra. Then the map of Theorem 1.1 induces isomorphisms of
K-groups with finite coefficients

Ki(A;Z=k)! K
top
i (A;Z=k); i > 1;

for any k > 1.
Remark on the proof. The Theorem for the cases A = CR(X) and A = CC (X)

(X compact Hausdorff) is proved in [F] and [P]. Then by excision (Theorem 1.2),
the Theorem also holds for the non-unital cases A = CR

0 (X) and A = CC

0 (X)
(X locally compact Hausdorff). (This case of the theorem is already in [F, Prop.
8.1].) The most general commutative complex C�-algebra is of the form CC

0 (X),
so we’re done with the complex case.

Now the most general commutative real C�-algebra is

C0(X; �) =
def
ff 2 CC

0 (X) j f(�(x)) = f(x)g;

where (X; �) is a Real space in the sense of Atiyah, i.e., a locally compact space
equipped with an self-homeomorphism � such that �2 = 1. The topological K-
groups of C0(X; �) are Atiyah’s KR-groups of (X; �) (with compact supports).
We have a short exact sequence of real C�-algebras

0 ! C0(XnX
� ; �)! C0(X; �)! CR

0 (X
� )! 0;
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80 JONATHAN ROSENBERG

which gives a commutative diagram of fibrations of K-theory spectra

K (C0(XnX
� ; �)) - K (C0(X; �)) - K (CR

0 (X
� ))

KR(XnX� )
?

- KR(X)
?

- KO(X� ):
?

Applying the Five-Lemma to the corresponding long exact sequences ofK-groups
gives the result for C0(X; �) once we know it for C0(XnX

� ; �) and for CR

0 (X
� ).

So, replacing X by XnX� , we may (and do) assume � acts freely. Then if
the covering map q:X ! X=� is a trivial covering, i.e., if X �= Y

`
Y , with �

interchanging the two copies of Y , we have C0(X; �) �= CC

0 (Y ), and the Theorem
follows from the complex case. By Mayer–Vietoris, we get the result whenever �
acts freely on X and there is a finite cover of X=� by open sets over which the
covering X ! X=� is trivial, for example when X is compact. To handle the
general locally compact case, one can first argue as in [F, x8] that the inclusion
Cc(X; �) ,! C0(X; �) induces isomorphisms on algebraic K-groups with finite
coefficients. Since X=� is the increasing limit of open subsets Uj with compact
closures over which q is trivial, Cc(X; �) is the inductive limit of (nonunital) rings
of functions Cc(q

�1(Uj); �) for which the theorem is already verified. So

Ki(C0(X; �);Z=k) �= Ki(Cc(X; �);Z=k)�= lim
�!

Ki(Cc(q
�1(Uj); �);Z=k)

�= lim
�!

KR�i(q�1(Uj); � ;Z=k) = KR�i(X;Z=k):
2

The correct spectrum-theoretic version of this is essentially proved in [Ro1,
Thm. 2.2], and can be reformulated as follows. For simplicity we only give
the results for CR

0 (X) and CC

0 (X), though there is a similar result for C0(X; �)
using kr.

THEOREM 1.8. The map of Theorem 1.1 with finite coefficients

K (A;Z=k)! K
top(A;Z=k)

for A = CR

0 (X) or CC

0 (X), induces ( for X a locally compact space whose one-
point compactification X+ has the homotopy type of a finite CW-complex) equi-
valences of spectra

K (CR

0 (X);Z=k)! ko(Z=k)^X+;

K (CC

0 (X);Z=k)! ku(Z=k)^X+;

where ko(Z=k) and ku(Z=k) denote the spectra of connective K-theory with Z=k

coefficients.
Proof. The real and complex cases are exactly the same, so we only give the

proof in the real case. Let H�i(X) = Ki(C
R

0 (X);Z=k): By Theorem 1.7, this
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is a homotopy functor of X for i > 0, and as proved in [Ro1, x2], it is also a
homotopy functor for i 6 0. Excision and the long exact sequence for K-theory
with finite coefficients then show that H is a(n unreduced) cohomology theory (on
the category of unbased locally compact spaces and proper maps), so that when
X+ has the homotopy type of a finite CW-complex,

K (CR

0 (X);Z=k) ' E ^X+

for some spectrum E . It remains to identify E . The map

K (CR

0 (X);Z=k)! K
top (CR

0 (X);Z=k)

induces a natural transformation of cohomology theories from H to KO( ; Z=k)
which is an isomorphism on H�i for i > 0 by Theorem 1.7, and furthermore,
Hi(pt) = K�i(R;Z=k) = 0 for i > 0. So the cohomology theoryH is connective.
By the universal property of the connective cover of a spectrum [Ad, p. 145], we
have a factorization

H ! ko( ; Z=k)! KO( ; Z=k):

Since the natural transformation H�i(X) ! fko�i(X+; Z=k) is an isomorphism
for X a point, it is an isomorphism for anyX for whichX+ has the homotopy type
of a finite CW-complex. 2

2. K-Regularity and Homotopy Invariance of Negative Algebraic
K-Theory

Let us now discuss some of the evidence for the following.

CONJECTURE 2.1. Any C�-algebra (over F = R or C ) is K0-regular.

For abelianC�-algebras of the formCR

0 (X) orCC

0 (X), this was proved in [Ro1,
Thm. 2.5]. Another proof of a much stronger result will be given in the next section.
For stable C�-algebras, Conjecture 2.1 is a special case of Theorem 1.5. And a
result along these lines is strongly suggested by the Olsen–Pedersen Theorem, 1.6.
Indeed, if A is a C�-algebra and I is a closed ideal in A, then the short exact
sequence

0 ! I ! A! A=I ! 0

gives rise by Theorem 1.3 to a long exact sequence of NK-groups

� � �
@
- NKi(I)! NKi(A)! NKi(A=I)

@
- NKi�1(I)! � � � :

(Actually, we only need the part of the sequence from NK1(A) to NK0(I), which
is well-defined even without appealing to Suslin–Wodzicki, since NK0 always
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has the excision property.) Since NK1 is naturally isomorphic to the functor Nil
constructed out of nilpotent matrices, and since a matrix algebra over a C�-algebra
is again a C�-algebra, the Olsen–Pedersen Theorem 1.6, applied to Mk(A) for all
k 2 N, implies that the mapNK1(A)! NK1(A=I) is always surjective, and thus
that @:NK1(A=I)! NK0(I) is always the 0-map. Vanishing of NK0(I) would
of course ‘explain’ this phenomenon.

In fact, we can turn things around and use Theorem 1.6 to give a proof, not
depending on the harder results in [Hig], of the vanishing of NK0 for stable C�-
algebras. Let A be a stable C�-algebra and letM(A) be its multiplier algebra. The
fact that this algebra is highly ‘infinite’ implies that all its K-groups, including the
NK-groups, must vanish [Hig, Thm. 2.6.5]. So from the exact sequence

NK1(M(A))! NK1(M(A)=A)
@
- NK0(A)! NK0(M(A))

we see @:NK1(M(A)=A) ! NK0(A) is an isomorphism. But as we just saw,
the Olsen–Pedersen Theorem implies that @ is the 0-map, so NK0(A) = 0.

Similarly, the results of x1 also provide evidence for:

CONJECTURE 2.2. The negativeK-functorsKi, i 6 0, are homotopy functors on
the category of C�-algebras (over F = R or C ).

Remark. Homotopy invariance means that if B and A are C�-algebras and

':B ! C([0; 1])b
A
is a homotopy between homomorphisms

'0 = eval0 � '; '1 = eval1 � ':B ! A

(here eval0, eval1 are the evaluation maps C([0; 1])b
A ! A at 0 and 1), then the
induced maps on negativeK-groups coincide. To prove this, it is clearly sufficient
to forget the algebra B and to show that the evaluation maps

eval0 and eval1:C([0; 1])b
A! A

induce the same maps on negativeK-groups. For this it is enough to prove vanishing
of the negative K-groups for the ‘cone’ on A, cA = C0((0; 1])b
A, since we have
exact sequences of C�-algebras

0 ! C0((0; 1])b
A! C([0; 1])b
A evalj
- A! 0

for j = 0; 1, each of which is split by the inclusion of A into C([0; 1])b
A as
constant functions, and we can apply the associated long exactK-theory sequences.

The abelian case of Conjecture 2.2, proved in [Ro1], leads to Theorem 2.4 of
[Ro1]. For completeness, we also state a version for KR-theory.
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THEOREM 2.3 [Ro1, Theorem 2.4]. Let X be a (second-countable) locally com-
pact space. Then there are natural isomorphisms

Ki(C
C

0 (X)) �= fku�i(X+); i 6 0;

Ki(C
R

0 (X)) �= fko�i(X+); i 6 0;

and for a Real space (X; �) in the sense of Atiyah

Ki(C0(X; �)) �= fkr�i(X+); i 6 0:

Here X+ denotes the one-point compactification of X and ku, ko, and kr denote
the connective K-theories.

Proof. Homotopy-invariance of the maps X 7! Ki(C
C

0 (X)) and X 7! Ki(C
R

0
(X)) (i 6 0), together with the long exact sequences in K-theory, shows that these
are countably additive cohomology theories on the category of (second-countable)
locally compact spaces and proper maps. These can be spliced together with K-
theory with compact supports (for i > 0) to get cohomology theories that must be
representable by spectra. These spectra are connective, since negative K-theory
vanishes for fields, and thus Ki(C

C

0 (S
0)) and Ki(C

R

0 (S
0)) vanish for i 6 0. Since

we have natural transformations to topological K-theory coming from the map
of Theorem 1.1, which must factor through connective K-theory, and since the
induced maps to connective K-theory give isomorphisms of coefficient groups,
they are isomorphisms of cohomology theories. This proves the theorem in the real
and complex cases.

The Real case is handled as in the proof of Theorem 1.7. 2

Remark 2.4. Here are some possible strategies for attacks on Conjectures 2.1
and 2.2. Unfortunately, neither seems to work without some additional information.
We illustrate these strategies in the case of Conjecture 2.1. Similar methods could
be applied to Conjecture 2.2.

Strategy A: Stabilization. One idea is to exploit the fact that we understand the
K-groups and NK-groups of stable C�-algebras. Suppose A is a C�-algebra and
we are given a class in K0(A[t1; : : : ; tr]) which maps to 0 in K0(A) under the
map q� induced by q: tj ! 0. We may represent the class by a formal difference
[e] � [e0] of idempotent matrices over A[t1; : : : ; tr] such that q(e) = q(e0). Let
HA be the standard Hilbert A-module. Its algebra of compact A-endomorphisms
is K(HA) �= Ab
K, which contains as an ideal the algebra M(A) of finite-rank
A-endomorphisms. (These are in some sense ‘infinite matrices’ over A, which
explains our choice of notation.) SinceM(A) is the algebraic inductive limit of the
A-endomorphism rings of the finite-rank freeA-submodules ofHA, each of which
is isomorphic to a matrix ring over A, M(A) has precisely the same (algebraic)
K-groups as A, and e; e0 2 M(A)[t1; : : : ; tr]. Let �:M(A) ! K(HA) �= Ab
K
be the completion map. Then ��([e] � [e0]) 2 N rK0(Ab
K) = 0 (Theorem 1.5).
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Thus the projectiveK(HA)[t1; : : : ; tr]+-modules generated by e and e0 are stably
isomorphic. Suppose we could show they were actually isomorphic (using stable-
range techniques to cancel the additional summands needed for stabilization), by
an isomorphism sending e to e0. Then the isomorphism of K(HA)[t1; : : : ; tr]+-
modules would restrict to an isomorphism of M(A)[t1; : : : ; tr]+-modules.

This strategy would work immediately if one could show thatC = Ab
K[t1; : : : ;
tr] has Bass stable rank one, since in that case one has cancellation for arbitrary
projective modules [Va1, Thm. 2.7]. Because of the tensor factorK, the stable rank
of C , if finite, is at most two; however, stable rank one seems unlikely since it fails
already when A = C . (Stable rank one for K[t1; : : : ; tr] would imply stable rank
one for C [t1 ; : : : ; tr] by [Va1, Thm. 3.9], which simply isn’t true; for r > 1, the
polynomial ring always has stable rank at least 2). 2

Strategy B: Topologization. Another possible idea, used with some success in [Ro1],
is to topologize the algebra B = A[t1; : : : ; tr], and then the matrix algebras over
this algebra, with the inductive limit topology for the subsets Bd of polynomials
of fixed maximal degree d. (The polynomials over A of degree 6 d in the tj’s
are a finitely generated free A-module, and thus carry a natural norm topology.
Obviously B is the countable increasing union

S
1

d=0 Bd.) The inductive limit
topology is compactly generated and Hausdorff, and is defined by the property that
a map from a compact Hausdorff spaceX into B is continuous if and only if it has
image contained in a single Bd, and is continuous as a map X ! Bd.

Without loss of generality, assume that A has a unit. Fix an n and consider the
space of idempotentsPn(B) inMn(B); this has an obvious inductive limit topology
as the union of thePn(Bd)’s (with obvious notation). Define an equivalence relation
� on Pn(B) by e � e0 if Bne �= Bne0 as B-modules. By definition of K0,
Pn(B)=� maps naturally to K0(B), and K0(B) is the Grothendieck group of the
monoid lim

�!
Pn(B)= �. We give Pn(B)= � the quotient topology from Pn(B).

Then we have the following result.

PROPOSITION 2.5. With notation as above, suppose Pn(B)=� is Hausdorff and
discrete for all sufficiently large n. Then N jK0(A) = 0 for j 6 r.

Proof. For s 2 [0; 1], let 's be the endomorphism of B defined by tj 7! stj .
Then '1 = idB and '0 = q:B ! A. Furthermore, each 's induces a self-map of
Pn(B)=�, and the map

'�:
�
Pn(B)=�

�
� [0; 1]! Pn(B)=�

is continuous. (The map Pn(B) � [0; 1] ! Pn(B) is clearly continuous for the
inductive limit topology, since 's does not increase the degree of any polynomial,
and then passes to the quotient.) Thus in Pn(B)=�, '1(e) = e and '0(e) = q(e)
lie in the same equivalence class. If this is true for all sufficiently large n, then q�
is an isomorphism on K0. 2
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The hypothesis of Proposition 2.5 is true if A = C or R, but unfortunately it seems
hard to determine when it holds in general. In fact, it seems as if usually it would
amount to putting the cart before the horse – usually it would be easier to prove
vanishing ofNK0 than the hypothesis of the Proposition, even for d = 1. However,
the same method appears more useful when applied to Conjecture 2.2. We have
similarly:

PROPOSITION 2.6. Let B be the Laurent polynomial ring B = A[t�1 ; : : : ; t
�
r ],

and define an inductive limit topology as before on Pn(B) as before, but replacing
the degree of a monomial ti11 : : : tirr by its ‘length’ ji1j+ � � � + jirj. Again, assume
Pn(B)=� is Hausdorff and discrete for all sufficiently large n. Then K�j(A) is
homotopy-invariant for j � r, in the sense that homotopic maps into A induce the
same map on K�j(A).

Proof. An idempotent matrix e inMn(C([0; 1]; A)[t�1 ; : : : ; t
�
r ]) is by definition

of the inductive limit topology the same thing as a continuous map [0; 1]! Pn(B).
As before, discreteness of Pn(B)=� implies this map passes to a constant map
[0; 1] ! Pn(B)= �. If e and e0 are two maps [0; 1] ! Pn(B) corresponding
to projective modules that become equivalent after evaluating at 0, they are thus
equivalent after evaluating anywhere, so the maps eval0 and eval1 agree. If this is
true for all large n, then K0(B) is homotopy-invariant with respect to homomor-
phisms from other Banach algebras intoA. By the argument of Proposition 2.5, this
forces N jK0(A) to vanish for j 6 r, and K�j(A) for j � r, which is a canonical
summand in K0(B), is homotopy-invariant. 2

It is natural to ask whether Conjectures 2.1 and 2.2 should apply more generally
to Banach algebras, or whether they are special to the case of C�-algebras. The
following counterexamples show that the latter is the case.

EXAMPLE 2.7. A (commutative, semisimple) Banach algebra which is not K0-
regular. Let A be the disk algebra (the algebra of continuous complex-valued
functions on the closed unit disk � in the complex plane which are holomorphic
in the open disk �), and let I be the ideal in A generated by the function z2,
in other words, the functions in A which vanish to second order at 0. Clearly
A=I �= C [z]=(z2). The element z 2 A=I is nilpotent, and thus corresponds to an
element [z] of NilA=I �= NK1(A=I). We claim it does not lift to an element of
NilA �= NK1(A), and that @[z] 6= 0 in NK0(I). To see this, note that sinceA[t] is
commutative, we have an exact sequence (obtained from the long exact K-theory
sequence by dividing out SK1-terms)

� � � ! A[t]� ! (A=I)[t]�
@
- K0(I[t]):

The element [z] 2 NilA=I corresponds to the element

1 + zt 2 (A=I)[t]� = (C [z; t]=(z2 ))�:
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Since A is an integral domain, an invertible element of A[t] cannot contain any
non-zero terms divisible by t. (If n > 0, m > 0, an 6= 0, bm 6= 0, and

(a0 + � � �+ ant
n)(b0 + � � �+ bmt

m) = 1;

then anbm = 0, a contradiction.) So 1 + zt does not lift to an invertible element
of A[t], and must map nontrivially to the NK0(I) summand in K0(I[t]). Note that
I+ is thus a unital semisimple Banach algebra which is not K0-regular. 2

EXAMPLE 2.8. Failure of homotopy invariance ofNK0 for Banach algebras. The
same example shows as well that the functor NK0 is not homotopy-invariant on
general Banach algebras, even if they are semisimple. Indeed, define a homotopy
':A� [0; 1] ! A from the identity map '1 = idA to '0 = eval0 by ('tf)(z) =
f(tz), jzj 6 1, 0 6 t 6 1. Then each 't preserves the ideal I and so ' restricts to a
homotopy from the identity map on I to the 0 map; i.e., I is contractible. However,
we have seen that NK0(I) 6= 0. If NK0 were a homotopy functor, this would be
impossible. 2

3. K-Regularity Results

In this section we will show that abelian C�-algebras, in spite of being highly
non-Noetherian, and thus somewhat pathological from the algebraist’s usual point
of view, are in fact quite well behaved when it comes to algebraic K-theory. In
particular, their Karoubi–Villamayor K-groups coincide with their usual algebraic
K-groups.

THEOREM 3.1. Any commutative C�-algebra A (over F = R or C ) is Ki-regular
for all i, i.e., the inclusion A ,! A[t1; : : : ; tr] induces isomorphisms on all alge-
braic K-groups, for any r.

As the proof is rather complicated, let us begin with an easier result which is
somewhat related and which may give the reader some idea why this should be
true. In the case of commutative algebras, K0-regularity is closely linked to the
subject of Pic-regularity. In this regard, it is convenient to note the following.

THEOREM 3.2. Any commutative C�-algebra A (over F = R or C ) is Pic-regular,
i.e., the inclusion A ,! A[t1; : : : ; tr] induces isomorphisms on Pic for all r > 1.

Proof. We will apply the results of [Swa], which give a criterion for Pic-regularity
for general (not necessarily Noetherian) commutative rings. Swan [Swa, Theorem
1] shows that a commutative ringA is Pic-regular if and only ifAred is seminormal,
i.e., if b; c 2 A and b3 = c2 implies that there exists some element a 2 Ared with
a2 = b, a3 = c. For our purposes, since abelian C�-algebras are reduced (have
no non-zero nilpotent elements), we may replace Ared by A here. So suppose A
is a commutative C�-algebra and b; c 2 A, b3 = c2. Realize A as C0(X; �) for
some locally compact space X and involution � . We need to construct a 2 A with
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a2 = b, a3 = c. Clearly b and c both vanish on the same closed � -invariant subset
Y of X , and a must vanish there as well. So the problem is to construct a suitable
square root a of b over the set W = XnY . Replacing A by C0(W; �), we may
assume b and c are everywhere non-vanishing. Then if a(x) = c(x)=b(x), this
is the unique function satisfying a(x)2 = b(x), a(x)3 = c(x), and is necessarily
� -equivariant and vanishing at infinity (onW ), so it defines an element ofA. Hence
A is seminormal. 2

Now it is clear that Example 2.7 is closely related to:

EXAMPLE 3.3. A (semisimple commutative) Banach algebra which is not Pic-
regular. The unital semisimple Banach algebra I+ of Example 2.7 is not seminor-
mal, hence not Pic-regular. This ‘explains’ why it is not K0-regular either. Indeed,
this algebra is reduced, and if we choose b = z2, c = z3, then b3 = c2, but b has no
square root in I+. 2

EXAMPLE 3.4. A special case of Theorem 3.1. Since the functorNK1 is naturally
equivalent to the functor Nil constructed from nilpotent matrices, and since C�-
algebras usually contain many nilpotent elements which cannot be ‘put in triangular
form’, one might at first expectK1-regularity to fail for generalC�-algebras, in fact
even in the abelian case. To make this more precise, note that if A = C([0; 1]) (a
standard example of a commutative C�-algebra), then a class in NK1(A) �= NilA
is represented by a nilpotent matrix over A, which is just a continuous function
from [0; 1] to nilpotent matrices over C . Consider for example the case where the
matrices are of size 2 � 2. If this nilpotent matrix-valued function is conjugate
under

GL(2; CC ([0; 1])) = C([0; 1];GL(2; C ))

to something of the form
�

0 �
0 0

�
, it clearly represents the trivial element of NilA.

But there are nilpotent matrix-valued functions which cannot be put in triangular
form. Choose the function so that it has rank 1 almost everywhere, but so that the
subspaces of C 2 representing the kernel and image of the matrix ‘oscillate’ faster
and faster as one approaches a point where the matrix degenerates to 0. There
are huge numbers of choices for a matrix function of this desired form, but one
possibility is the continuous matrix-valued function

a(x) =

8>>>>><
>>>>>:
x

0
@ sin

�
1
x

�
cos

�
1
x

�
cos2

�
1
x

�
� sin2

�
1
x

�
� sin

�
1
x

�
cos

�
1
x

�
1
A ; x 2 (0; 1];

�
0 0
0 0

�
; x = 0:

(The continuity follows from the fact that sin
�

1
x

�
and cos

�
1
x

�
remain bounded

as x ! 0+.) We claim that a(x) is not conjugate under C([0; 1]; GL(2; C )) to an
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upper-triangular matrix. For otherwise, there would have to be a continuous map
F from [0; 1] to C P

1 �= S2 (the variety of one-dimensional subspaces of C 2 ) such
that, for each x 2 [0; 1], a(x)F (x) = 0. Now a(x) has one-dimensional kernel for
x 6= 0, so necessarily F (x) = ker a(x) for x 6= 0. But the map (0; 1]! C P

1 given
by x 7! ker a(x) has no continuous extension F to [0; 1], since if it did, kera(x)
would have to converge to a limit in C P

1 , namely F (0), as x! 0+, and

lim
x!0+

ker a(x)

doesn’t exist. One might expect from this that the function a defines a non-zero
element of NilA.

Theorem 3.1 runs counter to this expectation. To illustrate some of the main
ideas involved, let’s show before getting to the general case that any function a from
[0; 1] to nilpotent 2� 2 matrices, whether or not it can be put in upper-triangular
form, represents the trivial element of NilA. Note that the set of nilpotent 2 � 2
matrices over C is

X =

��
x1 x2

x3 �x1

�
: (x1; x2; x3) 2 C

3 ; x2
1 + x2x3 = 0

�
;

an affine algebraic variety (over C ). Thus a: [0; 1]! X induces a map a�: C [X] !
A, and the element of NilA defined by a lies in the image of the induced map
Nil C [X] ! NilA. Now there is a proper map of affine varieties p: C 2

� X

defined by

(t1; t2) 7! (t1t2; t
2
1; �t

2
2);

which is a ‘resolution of singularities’ for X . This map is a branched covering,
generically 2-to-1, but branched over the origin 0 (the zero-matrix). Next, observe
that any map a: [0; 1]! X has a factorization

C
2

�
�
�
�
�

â

3

[0; 1] a
- X:

?

p

To see this, let Y = a�1(0), which is a closed subset of [0; 1]. We obtain the
lifting by sending Y to p�1(0) = (0; 0) 2 C

2 , and mapping the complement of
Y , which is an open subset of [0; 1], hence a countable disjoint union of intervals,
using the path lifting property of the covering map p: C 2nf(0; 0)g ! Xnf0g.
Then ba: [0; 1]! C

2 induces a factorization of the map Nil C [X] ! NilA through
Nil C [t1 ; t2], which is zero. 2

Before getting to the proof of Theorem 3.1, we need some preliminary results.
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PROPOSITION 3.5. Suppose A is a C�-algebra (over F = R or C ) and B and C
are quotient C�-algebras of A (corresponding to closed subsets bB and bC of the
dual space bA, with bA = bB [ bC). Let D be the quotient of B and C corresponding
to the closed set bB \ bC. Let r > 1 and let A[t] be shorthand for A[t1; : : : ; tr], etc.
Then one has a functorial Mayer–Vietoris exact sequence:

� � � ! Ki+1(D[t])
@
- Ki(A[t])

(b�; c�)
- Ki(B[t])�Ki(C[t])

d1��d2�- Ki(D[t])
@
- Ki�1(A[t])! � � � :

Here b:A[t] ! B[t], c:A[t] ! C[t], d1:B[t] ! D[t], d2:C[t] ! D[t] are the
quotient maps. The boundary map @ will be made explicit in the proof. In particular,
if the quotient map from B to D splits, then the boundary map @ vanishes (in all
degrees).

Proof. The proof of this is the usual one, granted the excision theorem (1.3).
Namely, let I = ker d1 and J = ker d2 (these are ideals of B[t] and C[t], respec-
tively), and observe that I �= ker c, J �= ker b. So we have a commutative diagram
with exact rows and columns:

� � �
@1- Ki(I) - Ki(B[t])

d1�- Ki(D[t])
@1 - � � �

� � �
@C- Ki(I)

wwwwww
- Ki(A[t])

6

b�

c�- Ki(C[t])

6

d2�

@C - � � �

Ki(J)

6

===== Ki(J):

6

The Mayer–Vietoris exact sequence follows by splicing and diagram-chasing. Note
that the boundary map @ is the ‘zig-zag’ composite

Ki(D[t])
@1- Ki�1(I)! Ki�1(A[t]):

So if the quotient map B � D splits, d1 splits, @1 vanishes, and @ vanishes. 2

LEMMA 3.6. Let Y be a compact Hausdorff space and let cY be the (closed)
cone on Y . As usual, denote by C(Y ) the algebra of continuous complex-valued
functions on Y . Then for any r > 1, the map

GL(C(cY )[t1; : : : ; tr]; (t1; : : : ; tr))

! GL(C(Y )[t1; : : : ; tr]; (t1; : : : ; tr))

(induced by the restriction map C(cY )! C(Y )) is split surjective.
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Proof. For simplicity, let’s write A[t] for A[t1; : : : ; tr]. The group

G = GL(C(Y )[t]; (t1; : : : ; tr))

is (by definition) the kernel of the map from GL(C(Y )[t]) to GL(C(Y )) induced
by sending ti 7! 0. Similarly, let H = GL(C(cY )[t]; (t1; : : : ; tr)). Note that an
element of G is a polynomial-valued matrix of the form 1+ a(t), where the entries
of the polynomial-valued matrix a(t) lie in the ideal (t1; : : : ; tr) and the condition
that 1+a(t) be invertible is precisely that a(t) should be nilpotent (this guarantees
that the power series for the inverse terminates in finitely many steps, hence is
polynomial-valued). So we define the splitting map G! H as follows:

1 + a(t) 7! 1 + b(t);

where b(t) is a polynomial-valued matrix function on cY = Y � [0; 1]=Y � f0g
given by

(y; s) 7!

(
a(y)(st); 0 < s 6 1;

0; s = 0:

Note that this gives a well-defined nilpotent polynomial-valued matrix function on
cY taking the value 0 at the cone point, and agreeing with a(t) on Y � f1g �= Y .
Also note that replacing t by st respects multiplication. So we have the desired
splitting. 2

LEMMA 3.7. Let Y � X be a finite polyhedral pair. Then for any r > 1, the
boundary map @ vanishes (in all degrees) in the long exact sequence

� � � ! N rKi(C(X))! N rKi(C(Y ))
@
- N rKi�1(C0(XnY ))! � � � :

Proof. Let Z = X [Y cY be the mapping cone of the inclusion map Y ,! X .
Note that application of the Quillen +-construction to the map of groups in Lem-
ma 3.6 shows that the map N rKi(C(cY ))! N rKi(C(Y )) is split surjective (for
all i).

Now use excision in N rK� (Theorem 1.3) to obtain a commutative diagram
with exact rows:

� � � - N rKi(C(Z)) - N rKi(C(cY ))
@1- N rKi�1(C0(XnY )) - � � �

� � � - N rKi(C(X))
?

- N rKi(C(Y ))
?

@
- N rKi�1(C0(XnY ))

wwwwww
- � � � :

As just pointed out, the second downward arrow in this diagram is split surjective.
(In fact one could give a similar argument to prove split surjectivity of the first
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downward arrow, but we won’t need this.) But cY is contractible and cY � Z is a
polyhedral pair, so cY is a retract of Z (by simple obstruction theory). Hence the
restriction map C(Z)! C(cY ) splits and the boundary map @1 in the first row of
the diagram vanishes. Diagram chasing then shows that the boundary map @ in the
second row of the diagram vanishes. 2

Proof of Theorem 3.1. We need to show that for any r and i, N rKi(A) = 0.
By the excision Theorem (1.3), it suffices to consider the case where A is unital.
We will just give the proof in the complex case F = C . Once this is done, the
theorem will then follow in the real case F = R by a transfer argument, since
the fact that AC = A 
R C is a free A-module of rank 2 implies that the maps
N rKi(A)! N rKi(AC ) are injective after inverting 2. Since the NK-groups are
all real vector spaces and thus torsion-free [We1], vanishing of N rKi(AC ) implies
vanishing of N rKi(A).

Thus we may assume A is a unital commutative C�-algebra over C , hence of
the form C(Y ) for some compact Hausdorff space Y . Next we make an additional
reduction to the case where the space Y is a finite polyhedron. Indeed, A is the
(algebraic) inductive limit of the filtered family of its finitely generated subalgebras,
and since allK-functors commute with direct limits, it suffices to fix r and to prove
the following:

LEMMA 3.8. Let A be a unital commutative C�-algebra (over C ) and let f1; : : : ;

fn 2 A. Then the inclusion into A of C [f1 ; : : : ; fn], the C -subalgebra generated
by f1; : : : ; fn, induces the zero-map on N rKi for all i.

But the algebra C [f1 ; : : : ; fn] is reduced (contains no nilpotent elements), hence
by the Nullstellensatz is isomorphic to the algebra C [X ] of regular functions on
some affine algebraic set X � C

N , N 6 n, not necessarily irreducible. Then
the inclusion C [f1 ; : : : ; fn] ,! A is dual to a continuous map Y ! X . The
image is a compact subset of the affine algebraic set X , which in turn lies in
the intersection of X with a closed ball, which is a finite polyhedron Y 0. So the
inclusion C [f1 ; : : : ; fn] ,! A factors through C(Y 0). Thus it suffices to prove the
Theorem (and the Lemma) when Y is a finite polyhedron.

SUBLEMMA 3.9. Suppose Y is a ‘nice’ compact subset of an affine algebraic set
X � C

N , and suppose Y is the finite union of ‘nice’ closed subsets Yj . Here ‘nice’
means that Y and the Yj are closed finite subpolyhedra for some triangulation of
X . Assume also that the induced maps C [X] ! C(Yj) have factorizations

C [ bXj ]
Q
Q
Q
Q
Qs

C [X]

6

- C(Yj);
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where bXj is a nonsingular affine variety. Equivalently, we assume we have factor-
izations of maps of spaces

bXj

�
�
�
�
�3

Yj � - X:
?

Then the image of N rKi(C [X]) in N rKi(C(Y )) vanishes for all i.
Proof of Sublemma. We prove this by induction on the number of pieces

Yj of Y . If there is only one such piece, i.e., Y = Y1, then the map from
N rKi(C [f1 ; : : : ; fn]) to N rKi(C(Y )) factors through N rKi of the regular ring
C [ bX1 ], which is 0. To handle the inductive step, we need a Mayer–Vietoris argument.
Assume by induction that the image of N rK�(C [X]) in N rK�(C(Z)) vanishes
whenever Z = Y1 [ � � � [ Ym is covered by m closed sets as in the theorem, and
then suppose Y = Y1 [ � � � [ Ym+1 = Z [ Ym+1 is covered by m+ 1 such closed
sets. Since we have vanishing of the image of N rK�(C [X ]) in N rK�(C(Z))
and N rK�(C(Ym+1)), Mayer–Vietoris (Proposition 3.5) gives the vanishing in
N rK�(C(Y )) provided the connecting map in the Mayer–Vietoris sequence van-
ishes. By the description of this connecting map in Proposition 3.5, Lemma 3.7
guarantees the desired vanishing. 2

Proof of Lemma 3.8. As indicated above, we may suppose A = C(Y ) with Y a
finite polyhedron. And as also indicated above, we may and do assume the algebra
C [f1 ; : : : ; fn] is isomorphic to the algebra C [X] of regular functions on some
affine algebraic set X � C

N , N 6 n, and that Y is finite polyhedron embedded as
a closed subset of X . Write X as a finite union of irreducible affine varieties Xj .
(To simplify notation, we think of affine varieties as point sets in C

N rather than
as schemes.) Choose (using [Hir]) a resolution of singularities pj: bXj ! Xj for
each j, so that bXj is a smooth irreducible affine variety for each j, each projection
map pj: bXj ! Xj is proper, and the projection map pj : bXj ! Xj is one-to-one
off the inverse image in bXj of a singular set in Xj which is a subvariety of lower
dimension. (We won’t really need the condition that pj is generically one-to-one; it
would suffice for it to be a submersion off the singular set, as in Example 3.4.) We
may assume as in the Sublemma that Y is a ‘nice’ compact subset of X . If we can
find a covering of Y \Xj for each j by closed subsets with liftings to bXj as in the
Sublemma, then we will have satisfied the condition of the Sublemma for a closed
covering of Y (the union of all these coverings), and will have thus proved Lemma
3.8. So without loss of generality, we may assume X irreducible with a resolution
p: bX ! X . As explained in [GoM], it is possible to find a Whitney stratification of
X compatible with p. In other words, X is partioned into a finite union of locally
closed subsets, called the pure strata X�, � ranging over a finite partially ordered
set, so that eachX� is a smooth (complex) manifold, the projection map p: bX ! X
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is a proper submersion, hence a fibration, when restricted to bX� = p�1(X�), and
such that there is a neighborhood T� of X� in X with a locally trivial projection
T�

! X� with fibers homeomorphic to the cone cL� on some finite polyhedron
L� (called the link of the stratum) [GoM, p. 41]. (In Example 3.4, one may take
the two strata of X to be f0g and its complement. The link of the singular stratum
is RP3 .) We need to construct a covering of Y by closed sets with liftings to the
‘desingularization’ bX as in the Sublemma. (In principle we could use different
desingularizations for the different sets of the covering, but this turns out to be
unnecessary.) We use the fact that X has a closed covering by sets of the form
D�

� cL�, where D� is a closed disk in X� (the closure of a small coordinate
chart in X�). Since p: bX�

! X� is a fibration, p is trivial over the contractible set
D�

� X�. Let bL� = p�1(L�), which is the link of bX� in bX . (Note, incidentally,
that since bX is smooth, bL�, the link of bX� in bX , is topologically a sphere.) The link
L� is stratified by its intersections with the other strata, and note that the maximum
number of strata of L� is less than the number of strata of X . (For example, if X
has only two strata, the top stratum is open, and the link of the singular stratum
is a manifold.) The map p gives a stratified surjection bL� ! L� compatible with
the cone structure on a neighborhood of X� (resp., bX�). By an argument using
induction on the number of strata, each L� can be covered by finitely many closed
sets W over which the map bL� ! L� becomes trivial. (For example, if L� is
non-singular, p gives a fibration bL� ! L�, which becomes trivial over a family of
contractible subsets of L�, e.g., the closed simplices for some triangulation, and
the map p: bX ! X takes the local form

p�1(D�)� cp�1(W )! D�
� cW;

where p: p�1(D�) ! D� and p: p�1(W ) ! W are trivial fibrations, i.e., projec-
tions onto one factor in a product. Thus there is a continuous section D� � cW !

p�1(D� � cW ) which gives a lifting of the desired type on (D� � cW ) \ Y . If
L� is singular, we iterate this process by looking at tubular neighborhoods of the
strata of L�, getting a local structure for p of the form

p�1(D�)� cp�1(W )! D�
� cW

with W itself a product of a disk and a cone, etc.) By compactness of Y , Y has a
finite covering by sets of this form, and we are done. 2

THEOREM 3.10. LetB be a type IC�-algebra (over F = R or C ) which has a finite
composition series, each of whose composition factors has the form A 
Mn(F)
(n > 0) or A
K, where A is commutative. Then B is Ki-regular for all i.

Proof. We argue by induction on the number of composition factors. To start the
induction, observe that the case B = A 
 K is covered by Theorem 1.5, and the
case B = A
Mn is covered by Theorem 3.1, together with Morita invariance of
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algebraicK-theory. For the inductive step, assume we know the result for algebras
B0 and B00 and consider a C�-algebra B with a short exact sequence

0 ! B0 ! B ! B00 ! 0:

Let r > 1, let B[t] be shorthand for B[t1; : : : ; tr], and consider the commutative
diagram with exact rows:

Ki+1(B
00)

@
- Ki(B

0) - Ki(B) - Ki(B
00)

@
- Ki�1(B

0)

Ki+1(B
00[t])
?

@
- Ki(B

0[t])
?

- Ki(B[t])
?

- Ki(B
00[t])
?

@
- Ki�1(B

0[t]):
?

By inductive hypothesis, the four outer maps are isomorphisms, so by the Five-
Lemma, so is the inner map. 2

COROLLARY 3.11. If B is a type I C�-algebra as in Theorem 3.10, then the
Bass–Quillen K-groups of B, Ki(B); the Karoubi–Villamayor K-groups of B,
KVi(B); and the Weibel homotopy algebraic K-groups of B, KHi(B), are all
naturally isomorphic to one another.

Proof. This is an immediate consequence of Ki-regularity for all i – see [We2,
Prop. 1.5]. 2

4. Higher Algebraic K-Theory and Analogues of the Fischer–Prasolov
Theorem

Theorem 1.7 suggests a somewhat audacious conjecture, for which the evidence is
admittedly somewhat flimsy.

CONJECTURE 4.1. Let A be any C�-algebra. Then the map of Theorem 1.1
induces isomorphisms of K-groups with finite coefficients

Ki(A;Z=k)! K
top
i (A;Z=k); i > 1;

for any k > 1.

This conjecture is rather easy to check for i= 1, and for i > 1, it’s already known
that the indicated map is surjective. Both of these results are in [K2, Thm. 2.5].
The best evidence for the conjecture lies in the fact that it is true in two ‘opposite’
cases, when A is commutative (Theorem 1.7) and when A is stable (Theorem 1.4).
Putting these two cases together gives the result for many type I C�-algebras.

THEOREM 4.2. Let B be a type I C�-algebra (over F = R or C ) which has a finite
composition series, each of whose composition factors has the form A 
Mn(F)
(n > 0) or A
K, where A is commutative. Then Conjecture 4.1 holds for B.
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Proof. The proof is quite similar to that of Theorem 3.10. We argue by induction
on the number of composition factors. To start the induction, observe that the case
B = A
K is covered by Theorem 1.4, and the case B = A
Mn is covered by
Theorem 1.7, together with Morita invariance of algebraic K-theory. However, we
will later need one additional fact, which is slightly more subtle, namely that in both
cases the mapK0(A;Z=k)! K

top
0 (A;Z=k) is also an isomorphism. (The problem

here is that K0(A;Z=k) surjects onto the k-torsion in K�1, whereas negative
algebraic and topological K-theory do not always coincide.) The fact that the map
K0(A;Z=k) ! K

top
0 (A;Z=k) is an isomorphism is again part of Theorem 1.4 in

the stable case, but in the abelian case, it requires Theorem 2.3, together with the
fact that on finite CW-complexes, ku1 and KU1 coincide, and similarly for ko1

and KO1. (This can be seen from examination of the Atiyah–Hirzebruch spectral
sequences.) For the inductive step, assume we know the result for algebras B0 and
B00 and consider a C�-algebra B with a short exact sequence

0 ! B0 ! B ! B00 ! 0;

with B0 of the form A 
 K or A 
Mn, A abelian. Consider the commutative
diagram with exact rows:

Ki+1(B
00;Z=k)

@
- Ki(B

0;Z=k) - Ki(B;Z=k) - Ki(B
00;Z=k)

@
- Ki�1(B

0;Z=k)

K
top
i+1(B

00;Z=k)
?

@
- K

top
i (B0;Z=k)
?

- K
top
i (B00;Z=k)

?

- K
top
i (B00;Z=k)

?

@
- K

top
i�1(B

0;Z=k):
?

By inductive hypothesis (plus what we know about B0 in degree 0), the four outer
maps are isomorphisms, so by the Five-Lemma, so is the inner map. 2

Theorem 4.2 suggests that the best test for Conjecture 4.1 should be a UHF algebra,
the C�-algebraic inductive limit of a sequence of matrix algebras and unital maps,
or more generally an AF algebra, the C�-algebraic inductive limit of a sequence of
finite-dimensional algebras, or still more generally, an inductive limit of type I C�-
algebras which are direct sums of tensor products of abelian algebras with matrix
algebras. Recent developments inC�-algebra theory show that such inductive limits
are quite a large class of C�-algebras, and include many of the best-known simple
nuclear algebras. The best result we have been able to prove about these is the
following. Note that this is only a very modest improvement over what is already
proved in [K2, Thm. 2.5] for general Banach algebras, the difference being the
construction of an explicit splitting map.

THEOREM 4.3. Let A be an AF algebra over F = R or C , or more generally an
inductive limit of type I C�-algebras which are direct sums of tensor products of
Abelian algebras with matrix algebras. Then the map of Theorem 1.1 induces split
surjections of K-groups with finite coefficients

Ki(A;Z=k)! K
top
i (A;Z=k); i > 1;
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for any k > 1.
Proof. By excision, it is no loss of generality to assumeA is unital and the maps

in the inductive limit are unital. Write A as an inductive limit of an increasing
sequence Bj of finite-dimensional algebras (in the AF case) or of direct sums
of tensor products of abelian algebras with matrix algebras, and let A0 � A be
the algebraic inductive limit of the sequence. (So A0 is a dense subalgebra of A.
In the AF algebra case, A0 has countable dimension over C .) By continuity of
algebraic and topologicalK-theory with respect to algebraic and topological direct
limits, respectively, we haveKi(A0;Z=k) = lim

�!
Ki(Bj ;Z=k)andK top

i (A;Z=k) =

lim
�!

K
top
i (Bj ;Z=k). But the comparison map Ki(Bj ;Z=k)! K

top
i (Bj ;Z=k) is an

isomorphism by Suslin’s Theorem or the Fischer–Prasolov Theorem (Theorem 1.7)
and Morita invariance. So the inclusion A0 ,! A induces a splitting map

K
top
i (A;Z=k) = lim

�!
K

top
i (Bj;Z=k)�= lim

�!
Ki(Bj ;Z=k)

= Ki(A0;Z=k)! Ki(A;Z=k):
2

We also have a quite parallel result for transformation group C�-algebras, that
is, crossed products of a commutative C�-algebra by an action of Z.

THEOREM 4.4. Let A = B o� Z be a crossed product of a commutative C�-
algebra B (over F = R or C ) by an action � of Z. Then the map of Theorem 1.1
induces split surjections of K-groups with finite coefficients

Ki(A;Z=k)! K
top
i (A;Z=k); i > 1;

for any k > 1.
Proof. By excision, it is no loss of generality to assume B (and hence A) is

unital. Let A0 be the algebraic crossed product, sometimes denoted B�[x; x
�1].

This is the dense subalgebra of A spanned (algebraically) by B and by the unitary
element x corresponding to the generator of Z. Now the topologicalK-theory ofA
is computed by the Pimsner–Voiculescu exact sequence [PV], whereas the algebraic
K-theory of A0 is computed by an algebraic counterpart to this exact sequence,
basically due to Grayson [Gr] (but see also [Ran], pp. 427–428, for an explanation
of why Grayson’s localization theorem is applicable). The algebraic case differs
from the topological one in the presence of ‘Nil’ terms, but these disappear when
working with finite coefficients (for the same reasons in the �-twisted case as
in the untwisted case discussed in [We1]). Putting everything together, we get a
commutative diagram with exact rows:

Ki(B;Z=k)
���1
- Ki(B;Z=k) - Ki(A0;Z=k) - Ki�1(B;Z=k)

���1
- Ki�1(B;Z=k)

K
top
i (B;Z=k)
?

���1
- K

top
i (B;Z=k)
?

- K
top
i (A;Z=k)
?

- K
top
i�1(B;Z=k)
?

���1
- K

top
i�1(B;Z=k):

?
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By an application of the 5-Lemma, just as in Theorem 4.3, we find that Ki(A0;Z=
k) ! K

top
i (A;Z=k) is an isomorphism. So the inclusion A0 ,! A induces a

splitting map

K
top
i (A;Z=k)�= Ki(A0;Z=k)! Ki(A;Z=k):

2

5. Some Results on Bass Stable Rank

The results of this section are worked out for the polynomial ring in one variable over
C([0; 1]), but presumably one could with more work but with similar techniques
study polynomial rings in more variables or over more complicated commutative
C�-algebras.

THEOREM 5.1. Let A = CC ([0; 1]) and let B = A[t]. Then B has stable rank
exactly 2 (in the sense of Bass).

Proof. The ring B cannot have stable rank 1, for the same reason as C [t] (the
functions t and 1 + t2 generate B as an ideal, but no sum of t and a multiple of
1 + t2 is invertible). So it’s enough to show B has stable rank 6 2.

First note thatB, an overring of the topological ringA, is a topological ring for its
inductive limit topology as an inductive limit of finitely generated free A-modules,
so its maximal ideals must be closed in this topology. In particular, if I is a maximal
ideal in B, then I \A is a closed prime ideal in A, hence consists of the functions
vanishing at some point x 2 [0; 1], and B=I is an algebraic field extension of
A=I \ A �= C , hence (since C is algebraically closed) B=I = A=I \ A. Thus I
must consist of those elements vanishing at some uniquely defined pair x 2 [0; 1],
t 2 C . Conversely, the functions vanishing at such a pair are clearly a maximal
ideal, so the maximal ideals of B are parameterized by [0; 1] � C . A collection
of elements of B generate B (algebraically) as an ideal if and only if they are not
contained in a maximal ideal, i.e., they have no common zeros when viewed as
functions on [0; 1]� C .

Now suppose a1; a2; a3 2 B generate B as an ideal. This means that as
functions on [0; 1] � C , they have no common zeros. We need to show that there
exist b1; b2 2 B such that a1 + b1a3; a2 + b2a3 generate B as an ideal. In fact, we
can take b1(x; t) and b2(x; t) to be independent of t. To see this, define for each
x 2 [0; 1] a subset G(x) of C � C by

G(x) = f(�1; �2) 2 C � C : a1(x; t) + �1a3(x; t);

a2(x; t) + �2a3(x; t) have no common zero (in t)g:

Since, by assumption, a1(x; t), a2(x; t), and a3(x; t) have no common zero (in t,
for x fixed), this set is nonempty. In fact, its complement in C � C is either empty
(if a3(x; t) � 0), or finite (if for example a1(x; t) � a2(x; t) � 0), or a divisor (the
vanishing set of some resultant). In any event, since one can get bounds (in x) on
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the coefficients of the resultant polynomials defining the G(x)’s, it is then easy to
see that there is a continuous selection function

(b1; b2): [0; 1]! C � C ; (b1(x); b2(x)) 2 G(x):
2

Retain the notationsA = CC ([0; 1]) and B = A[t]. We have SK1(A) = 0 since A
has stable rank 1. Since, in addition, A has no nonzero nilpotents, B� = A� and
NilA = SK1(B) = SK1(B; I), where I is the ideal inB generated by t. By Theo-
rem 5.1,B has stable rank 2, so SK1(B; I) is generated by Mennicke symbols (for
the elementary theory of these, see [Ro2, proof of Thm. 2.3.11 and Thm. 2.5.12]),
and in fact by [Va2, Thm. 6], the standard relations among Mennicke symbols (as
listed in [Ro2, Thm. 2.5.12] and [Va2]) give a presentation of SK1(B; I). In other
words, NilA is the free Abelian group on symbols [1+ tf(x; t) tg(x; t)], f; g 2 B

with 1+ tf and tg having no common zeros (in [0; 1]� C ), subject to the relations:

(5.2a) [1 + tf tg] = [1 + tf tg + th(1 + tf)],

(5.2b) [1 + tf tg] = [1 + tf + tgh tg],

(5.3c) [1 + tf t2gh] = [1 + tf tg] [1 + tf th],

whenever these make sense. (As pointed out in the introduction of [Va2], these
imply the other well-known relations, such as the fact that [1 tg] = 1.) Theorem 3.1
(or Example 3.4) gives the somewhat unexpected fact that this presentation defines
the trivial group, a fact which seems quite hard to show directly.
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