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Chapter 1

Group Von Neumann

Algebras in Topology:

L2-cohomology,

Novikov-Shubin invariants

1.1 Motivation

The idea of this part of the book is to explain how non-commutative geometry,
as developed in Part I, can be applied to problems in geometry and topology (in
the more usual sense of those words). In this chapter, we begin by applying the
first major new idea to emerge out of non-commutative geometry, namely, the
concept of continuous dimension as developed by Murray and von Neumann.

This concept starts to come into play when we compare the spectral de-
composition of the Laplacian (or more exactly, the Laplace-Beltrami operator
of Riemannian geometry) in the two cases of a compact (Riemannian) mani-
fold and a complete non-compact manifold. The comparison can be seen in the
following table:

Compact Non-compact
manifolds manifolds

Discrete spectrum Continuous spectrum
Finite-dimensional Infinite-dimensional

kernel kernel

Table 1.1: Spectrum of the Laplacian

So on a non-compact manifold, the dimension of the kernel of the Laplacian
is not usually very interesting (it’s often ∞) and knowing the eigenvalues of the
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6 Chapter 1. Group Von Neumann Algebras in Topology

Laplacian usually does not yield much information about the operator. (For
example, there may be no point spectrum at all, yet the spectral decomposition
of the operator may be very rich.) In the special case where the non-compact
manifold is a normal covering of a compact manifold with covering group π, we
will get around these difficulties by using the group von Neumann algebra of π
to measure the “size” of the infinite-dimensional kernel and the “thickness” of
the continuous spectrum near 0.

1.2 An Algebraic Set-Up

Here we follow the ideas of Michael Farber [23], as further elaborated by him
(in [25], [24], and [26]) and by Wolfgang Lück ([56], [56], and [57]). Let π
be a discrete group. It acts on both the right and left on L2(π). The von
Neumann algebras λ(π)′′ and ρ(π)′′ generated by the left and by the right regular
representations λ and ρ are isomorphic, and ρ(π)′′ = λ(π)′. These von Neumann
algebras are finite, with a canonical (faithful finite normal) trace τ defined by

τ(λ(g)) =

{
1, g = 1

0, g 6= 1,

and similarly for ρ. Call a finite direct sum of copies of L2(π), with its left
action of π, a finitely generated free Hilbert π-module, and the cut-down of such
a module by a projection in the commutant λ(π)′ = ρ(π)′′ a finitely generated
projective Hilbert π-module. (We keep track of the topology but forget the inner
product.)

The finitely generated projective Hilbert π-modules form an additive cat-
egory H(π). The morphisms are continuous linear maps commuting with the
π-action. Each object A in this category has a dimension dimτ (A) ∈ [0,∞), via

dimτ n · L2(π) = n, dimτ eL
2(π) = τ(e),

for each projection e in ρ(π)′′ (or more generally in Mn(ρ(π)′′), to which we
extend the trace the usual way, with τ(1n) = n, 1n the identity matrix in
Mn(ρ(π)′′) ). When π is an ICC (infinite conjugacy class) group, ρ(π)′′ is a fac-
tor, hence a projection e ∈ Mn(ρ(π)′′) is determined up to unitary equivalence
by its trace, and objects of H(π) are determined by their dimensions.

The category H(π) is not abelian, since a morphism need not have closed
range, and thus there is no good notion of cokernel. It turns out, however,
that there is a natural way to complete it to get an abelian category E(π).
The finitely generated projective Hilbert π-modules are the projectives in E(π).
Each element of the larger category is a direct sum of a projective and a torsion
element (representing infinitesimal spectrum near 0). A torsion element is an
equivalence class of pairs (A,α), where A is a projective Hilbert π-module and
α = α∗ : A → A is a positive π-module endomorphism of A (in other words, a
positive element of the commutant of the π-action) with kerα = 0. (Note that



1.2. An Algebraic Set-Up 7

this implies α has dense range, but not that it has a bounded inverse.) Two
such pairs (A,α), (A′, α′), are identified if we can write

(A,α) ∼= (A1, α1) ⊕ (A2, α2), (A′, α′) ∼= (A′
1, α

′
1) ⊕ (A′

2, α
′
2),

with α2 and α′
2 invertible and with (A1, α1) ∼= (A′

1, α
′
1), in the sense that there

is commutative diagram

A1
β

∼=
//

α

��

A′
1

α′

��
A1

β

∼=
// A′

1.

Thus we can always “chop off” the part of α corresponding to the spectral
projection for [ε,∞) (ε > 0) without changing the equivalence class of the object,
and only the “infinitesimal spectrum near 0” really counts. The dimension
function dimτ extends to a map, additive on short exact sequences, from objects
of E(π) to [0,∞), under which torsion objects go to 0.

To phrase things another way, the idea behind the construction of E(π)
is that we want to be able to study indices of elliptic operators D : A → B,
where A and B are Hilbert π-modules and D commutes with the π-action. By
usual tricks, we can assume D is a bounded operator. In the case of a compact
manifold (with no π around), A and B would then be Hilbert spaces, D would be
Fredholm, and the index would be defined as IndD = dim kerD− dim cokerD.
But in the case of a non-compact manifold, we run into the problem that D
usually does not have closed range. However, if we fix ε > 0 and let e, f be
the spectral projections for [ε,∞) for D∗D and DD∗, respectively, then the
restriction of D to eA maps this projective π-module isomorphically onto fB,
and D : (1 − e)A→ (1 − f)B represents a formal difference of torsion elements
((1 − e)A,D∗D) and ((1 − f)B,DD∗) of E(π) when we pass to the limit as
ε→ 0.

The most interesting invariant of a torsion element X represented by α =
α∗ : A→ A is the rate at which

Fα(t) = dimτ (EtA), Et = spectral projection for α for [0, t),

approaches 0 as t → 0. Of course we need to find a way to study this that is
invariant under the equivalence relation above, but it turns out (see Exercise
1.4.1) that Fα is well-defined modulo the equivalence relation

F ∼ G⇔ ∃C, ε > 0, G
(

t
C

)
≤ F (t) ≤ G(tC), t < ε.

The Novikov-Shubin capacity of X is defined to be

c(X ) = lim sup
t→0+

log t

logFα(t)
.
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Note that this is well-defined modulo the equivalence relation above, since if
G
(

t
C

)
≤ F (t) ≤ G(tC) for t sufficiently small, then

lim sup
t→0+

log t

logG(t)
= lim sup

t→0+

log t− C

logG(t)
= lim sup

t→0+

log(tC/C)

logG(tC)

= lim sup
t→0+

log t

logG(tC)
≤ lim sup

t→0+

log t

logF (t)

≤ lim sup
t→0+

log t

logG
(

t
C

)

= lim sup
t→0+

log(tC/C)

logG
(

t
C

)

= lim sup
t→0+

log t+ C

logG(t)
= lim sup

t→0+

log t

logG(t)
.

The Novikov-Shubin capacity satisfies

c(X1 ⊕X2) = max(c(X1), c(X2))

and for exact sequences

0 → X1 → X → X2 → 0,

max(c(X1), c(X2)) ≤ c(X ) ≤ c(X1) + c(X2).

Many people work instead with the inverse invariant

lim inf
t→0+

logFα(t)

log t
,

called the Novikov-Shubin invariant or Novikov-Shubin number, but the advan-
tage of the capacity is that “larger” torsion modules have larger capacities. If the
Novikov-Shubin invariant is γ > 0, that roughly means that dimτ (EtA) ≈ tγ .

Now consider a connected CW complex X with fundamental group π and
only finitely many cells in each dimension. The cellular chain complex C•(X̃) of

the universal cover X̃ (with complex coefficients) is a chain complex of finitely

generated free (left) C[π]-modules. We can complete to L2(π)⊗πC•(X̃), a chain
complex in H(π) ⊆ E(π), and get homology, cohomology groups

Hi(X,L
2(π)) ∈ E(π), Hi(X,L2(π)) ∈ E(π),

called (extended) L2-homology and cohomology , which are homotopy invariants
of X. The numbers βi(X,L

2(π)) =

dimτ (Hi(X), L2(π)) = dimτ (Hi(X), L2(π))

are called the (reduced) L2-Betti numbers of X. Similarly one has Novikov-
Shubin invariants (first introduced in [65], but analytically, using the Laplacian)
defined from the spectral density of the torsion parts (though by the UCT, the
torsion part of Hi(X,L2(π)) corresponds to the torsion part of Hi−1(X,L

2(π)),
so that there is some confusion in the literature about indexing).
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1.3 Calculations

Theorem 1.3.1 Suppose M is a compact connected smooth manifold with fun-
damental group π. Fix a Riemannian metric on M and lift it to the universal
cover M̃ . Then the L2-Betti numbers of M as defined above agree with the
τ -dimensions of

(
L2 closed i-forms on M̃

)
/d
(
L2 (i− 1)-forms on M̃

)
∩
(
L2 i-forms

)
.

Similarly the Novikov-Shubin invariants can be computed from the spectral den-
sity of ∆ on M̃ (as measured using τ).

Sketch of Proof. This is a kind of a de Rham theorem. There are two published
proofs, one by Farber ([25], §7) and one by Shubin [90]. Let Ω•(M) be the de
Rham complex of differential forms on M . Then a fancy form of the usual de
Rham theorem says that the complexes Ω•(M) and C•(M) (the latter being
the cellular cochains with coefficients in C for some cellular decomposition)
are chain homotopy equivalent. The same is therefore true for the complexes
L2(π) ⊗π Ω•(M) and L2(π) ⊗π C

•(M). Unfortunately the first of these is a
complex of Fréchet spaces, not of Hilbert π-modules, so Farber’s theory doesn’t
directly apply to it. However, there is a trick: we can also consider the complex
Ω•

Sobolev(M̃) of forms on M̃ values in Sobolev spaces. More precisely, fix m ≥
n = dimM and consider the complex

Ω•
Sobolev(M̃) : Ω0

(m)(M̃)
d
→ Ω1

(m−1)(M̃)
d
→ · · ·

d
→ Ωj

(m−j)(M̃)
d
→ · · · ,

where Ωj
(m−j)(M̃) consists of j-forms with distributional derivatives up to order

m− j in L2 (with respect to the Riemannian metric on M). Then the spaces in
this complex are all Hilbert spaces on which π acts by a(n infinite) multiple of the
left regular representation, and the differentials are all bounded operators com-
muting with the action of π (since we lose one derivative with each application of
d). An extension of Farber’s original construction shows that the spaces in such
a complex can also be viewed as sitting in an “extended” abelian category (in
effect one just needs to drop the finite generation condition in the definition of
E(π)). Then one shows that the dense inclusion L2(π)⊗πΩ•(M) ↪→ Ω•

Sobolev(M̃)
is a chain homotopy equivalence. (The proof depends on elliptic regularity; the
spectral decomposition of the Laplacian can be used to construct the inverse
chain map Ω•

Sobolev(M̃) → L2(π)⊗π Ω•(M) that “smooths out” Sobolev-space-
valued forms to smooth ones.) Putting everything together, we then have a

chain homotopy equivalence L2(π) ⊗π C
•(M) → Ω•

Sobolev(M̃) in a suitable ex-
tended abelian category, and thus the cohomology (with values in this extended
category) of the two complexes is the same. Since the L2-Betti numbers and
Novikov-Shubin invariants are obtained by looking at the projective and torsion
parts of the extended cohomology, the theorem follows. �
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Example 1.3.2 Let M = S1 and π = Z, so C[π] = C[T, T−1]. Then L2(π) is
identified via Fourier series with L2(S1), and the group von Neumann algebra
with L∞(S1), which acts on L2(S1) by pointwise multiplication. The trace τ

is then identified with the linear functional f 7→
1

2π

∫ 2π

0

f(eiθ) dθ. Take the

usual cell decomposition of S1 with one 0-cell and one 1-cell. Then the chain
complexes of the universal cover become:

C•(M̃) : C[T, T−1]
T−1
−−−→ C[T, T−1]

C•(M̃, L2(π)) : L2(S1)
eiθ−1
−−−−→ L2(S1).

So the L2-Betti numbers are both zero, but the Novikov-Shubin invariants
are non-trivial (in fact equal to 1), corresponding to the fact that if

α = |eiθ − 1| : L2(S1) → L2(S1),

then Fα(t) ≈ const · t for t small.
Generalizing one aspect of this is:

Theorem 1.3.3 (Cheeger-Gromov [13]) If X is an aspherical CW complex
(i.e., πi(X) = 0 for i 6= 1) with only finitely many cells of each dimension, and
if π = π1(X) is amenable and infinite, then all L2-Betti numbers of X vanish.

There is a nice treatment of this theorem in [21], §4.3. The reader not
familiar with amenable groups can consult [34] or [67] for the various forms
of the definition, but one should know at least that finite groups and solvable
groups are amenable and free groups on two or more generators (or any groups
containing such a free group) are not. It is not known then (at least to the
author) if for an aspherical CW complex with infinite amenable fundamental
group, one of the Novikov-Shubin capacities is always positive. However, this is
true in many cases for which one can do direct calculations, such as nilmanifolds
modeled on stratified nilpotent Lie groups [85].

As we will see, amenability is definitely relevant here; for non-amenable
groups, the L2-Betti numbers can be non-zero.

Example 1.3.4 Let M be a compact Riemann surface of genus g ≥ 2, M̃
the hyperbolic plane, π a discrete torsion-free cocompact subgroup of G =
PSL(2,R). In this case, it’s easiest to use the analytic picture, since L2(M̃) ∼=
L2(G/K), K = SO(2)/{±1}. As a representation space of G, this is a direct
integral of the principal series representations, and ∆ corresponds to the Casimir
operator, which has spectrum bounded away from 0. So β0 = 0, and also β2 = 0
by Poincaré duality.

Let g and k be the Lie algebras of G and K, respectively. Then the tangent
bundle of G/K is the homogeneous vector bundle induced from the representa-
tion space g/k of K, and the cotangent bundle is similarly induced from (g/k)

∗
.

Thus the L2 sections of Ω1(M̃) may be identified with unitarily induced repre-
sentation IndG

K (g/k)
∗
, which contains, in addition to the continuous spectrum,



1.3. Calculations 11

two discrete series representations with Casimir eigenvalue 0. Thus β1 6= 0.
The Atiyah L2-index theorem (to be discussed in the next chapter) implies
β1 = 2(g − 1). There are no additional Novikov-Shubin invariants, since these
measure the non-zero spectrum of ∆ close to 0, but the continuous spectrum of
∆ is bounded away from 0.

One can also do the calculation of β1 combinatorially. As is well known,
one can construct M by making suitable identifications along the boundary of
a 2g-gon. (See Figure 1.1.) This construction gives a cell decomposition of M
with one 0-cell, one 2-cell, and 2g 1-cells. Hence we can take L2(π) ⊗π C

•(M)
to be a complex of free Hilbert π-modules of dimensions 1, 2g, and 1. Since the
extended L2-cohomology vanishes in degrees 0 and 2, it then follows (by the
Euler-Poincaré principle in the category E(π)) that H1(X,L2(π)) must be free,
of dimension 2g − 2.

a

b

a

b

c

d

c

d

Figure 1.1: Identifications to form a closed surface (the case g = 2)

The vanishing of β0 in Example 1.3.4 is not an accident. In fact, Brooks ([6]
and [7]) proved the following:

Theorem 1.3.5 (Brooks [6]) Let M be a compact Riemannian manifold with
fundamental group π. Then 0 lies in the spectrum of the Laplacian on the
universal cover M̃ of M if and only if π is amenable.

Note that this implies (if π is non-amenable) that β0(M) and the Novikov-
Shubin capacity in dimension 0 must be 0, and in fact via Theorem 1.3.1, the de
Rham theorem for extended cohomology, that the extended cohomology group
H0(M,L2(π)) must vanish in E(π).

Generalizing one aspect of Example 1.3.4 is the following result, confirming
a conjecture of Singer:

Theorem 1.3.6 (Jost-Zuo [42] and Cao-Xavier [12]) If M is a compact
connected Kähler manifold of non-positive sectional curvature and complex di-
mension n, then all L2-Betti numbers of M vanish, except perhaps for βn.

As we will see in Exercise 1.4.4 or via the Atiyah L2-index theorem of the next
chapter, this implies that

βn = (−1)nχ(M),

where χ is the usual Euler characteristic.
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Note. One should not be misled by these examples into thinking that the
L2-Betti numbers are always integers, or that most of them usually vanish.
However, the Atiyah Conjecture asserts that they are always rational numbers.
If true, this would have important implications, such as the Zero Divisor Con-
jecture that Q[G] has no zero divisors when G is a torsion-free group [21]. For
more details on this and related matters, the reader is referred to the excellent
surveys by Lück: [58] and [59].

1.4 Exercises

Exercise 1.4.1 Fill in one of the details above by showing that if α = α∗ : A→
A and β = β∗ : B → B represent the same torsion element X of the category
E(π), and if Fα(t) and Gβ(t) are the associated spectral growth functions, de-
fined by applying τ to the spectral projections of α (resp., β) for [0, t), then
there exist C, ε > 0 such that

Gβ

(
t
C

)
≤ Fα(t) ≤ Gβ(tC), t < ε.

Exercise 1.4.2 Use Example 1.3.2 to show that the 0-th Novikov-Shubin in-
variant of the n-torus T n =

(
S1
)n

is equal to n. (In fact this is true for all
the other Novikov-Shubin invariants also, since the Laplacian on p-forms simply
looks like a direct sum of

(
n
p

)
copies of the Laplacian on functions.)

Exercise 1.4.3 Let X be a wedge of n ≥ 2 circles, which has fundamental
group π = Fn, a free group on n generators. This space has a cell decomposition
with one 0-cell and n 1-cells. Compute the L2-Betti numbers of X directly from
the chain complex L2(π) ⊗π C

•(X̃).

Exercise 1.4.4 Let X be a finite CW complex with fundamental group π. Use
the additivity of dimτ and the Euler-Poincaré principle to show that

dim X∑

i=0

(−1)iβi(X,L
2(π)) = χ(X),

the ordinary Euler characteristic of X.

Exercise 1.4.5 Prove the combinatorial analogue of Brooks’ Theorem (1.3.5)
as follows. Let X be a finite connected CW complex with fundamental group
π Show that H0(X,L2(π)) = 0 if and only if π is non-amenable, following
this outline. Without loss of generality, one may assume X has exactly one
0-cell, and has 1-cells indexed by a finite generating set g1, . . . , gn for π. First
show that d∗d : L2(π) ⊗π C

0(π) → L2(π) ⊗π C
0(π) can be identified with right

multiplication by ∆ = (g1−1)∗(g1−1)+ · · ·+(gn−1)∗(gn−1) on L2(π). So the
problem is to determine when 0 is in the spectrum of ∆. This happens if and only
if for each ε > 0, there is a unit vector ξ in L2(π) such that ‖ρ(gi)ξ− ξ‖ < ε for
i = 1, . . . , n, where ρ denotes the right regular representation. But this means
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that the trivial representation is weakly contained in ρ, which is equivalent
to amenability of π by Hulanciki’s Theorem (see [34], Theorem 3.5.2, or [67],
Theorem 4.21).

As pointed out to me by my colleague Jim Schafer, this combinatorial version
of Brooks’ Theorem is essentially equivalent to a classic theorem of Kesten on
random walks on discrete groups [52].

Exercise 1.4.6 Deduce from the Cheeger-Gromov Theorem and Exercise 1.4.4
that if X is a finite aspherical CW complex with nontrivial amenable fundamen-
tal group, then χ(X) = 0. See [81] and [86] for the history of results like this
one.
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Chapter 2

Von Neumann Algebra

Index Theorems:

Atiyah’s L2-Index

Theorem and Connes’

Index Theorem for

Foliations

2.1 Atiyah’s L2-Index Theorem

As we saw in the last chapter, it is not always so easy to compute all of the
L2-Betti numbers of a space directly from the definition, though sometimes we
can compute some of them. It would be nice to have constraints from which
we could then determine the others. Such a constraint, and more, is provided
by the following index theorem. The context, as with many index theorems,
is that of linear elliptic pseudodifferential operators. The reader who doesn’t
know what these are exactly can think of the differential operator d + d∗ on a
Riemannian manifold, or of the operator ∂ + ∂

∗
on a Kähler manifold. These

special cases are fairly typical of the sorts of operators to which the theorem
can be applied.

Theorem 2.1.1 (Atiyah [1]) Suppose

D : C∞(M,E0) → C∞(M,E1)

is an elliptic pseudodifferential operator (we’ll abbreviate this phrase hereafter
as ψDO), acting between sections of two vector bundles E0 and E1 over a closed

15
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manifold M , and M̃ is a normal covering of M with covering group π. Let

D̃ : C∞(M̃, Ẽ0) → C∞(M̃, Ẽ1)

be the lift of D to M̃ . Then ker D̃ and ker D̃∗ have finite τ -dimension, and

IndD(= dim kerD − dim kerD∗)

= L2- Ind D̃(= dimτ ker D̃ − dimτ ker D̃∗).

Sketch of Proof. For simplicity take D to be a first-order differential operator,
and consider the formally self-adjoint operator

P =

(
0 D∗

D 0

)

acting on sections of E = E0 ⊕ E1. Since D is elliptic, PDE theory shows that
the solution of the “heat equation” for P , Ht = exp(−tP 2), is a smoothing
operator , an integral operator with smooth kernel, for t > 0. And as t → ∞,
Ht → projection on kerD ⊕ kerD∗, so that if

γ =

(
1 0
0 −1

)
=

{
1 on E0

−1 on E1,

then γ commutes with Ht and IndD = limt→∞ Tr (γHt).

Define similarly

P̃ =

(
0 D̃∗

D̃ 0

)
, γ̃ =

(
1 0
0 −1

)
, H̃ = e−t eP 2

,

acting on sections of Ẽ = Ẽ0 ⊕ Ẽ1. Then L2- Ind D̃ = limt→∞ τ
(
γ̃H̃t

)
.

Here we extend τ to matrices over the group von Neumann algebra in the
obvious way. So we just need to show that

Tr (γHt) = τ
(
γ̃H̃t

)
. (2.1)

Now in fact both sides of (2.1) are constant in t, since, for instance,

d

dt
Tr (γHt) =

d

dt
Tr
(
γe−tP 2

)
= Tr

d

dt

(
γe−tP 2

)
=

= Tr

(
d

dt
e−tD∗D −

d

dt
e−tDD∗

)

= Tr
(
DD∗e−tDD∗

−D∗De−tD∗D
)
.
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But

Tr
(
DD∗e−tDD∗

)
= Tr

(︷ ︸︸ ︷
e−tDD∗/2D

︷ ︸︸ ︷
D∗e−tDD∗/2

)

= Tr
(
D∗e−tDD∗/2e−tDD∗/2D

)

= Tr
(
D∗e−tDD∗

D
)

= Tr (D∗ (1 − tDD∗ + · · · )D)

= Tr (D∗D (1 − tD∗D + · · · ))

= Tr
(
D∗De−tD∗D

)
.

So it’s enough to show that

lim
t→0+

(
Tr (γHt) − τ

(
γ̃H̃t

))
= 0.

But for small t, the solution of the heat equation is almost local. (See [74]

for further explanation.) In other words, Ht and H̃t are given by integration

against smooth kernels almost concentrated on the diagonal, and the kernel k̃
for H̃t is practically the lift of the kernel k for Ht, since, locally, M and M̃ look
the same. But for a π-invariant operator S̃ on Ẽ, obtained by lifting the kernel
function k for a smoothing operator on M to a kernel function to k̃, one can
check that

τ(S̃) =

∫

F

k̃(x̃, x̃) d vol(x̃)

=

∫

M

k(x, x) d vol(x)

= Tr(S),

F a fundamental domain for the action of π on M̃ . So that does it. �

For applications to L2-Betti numbers, we can fix a Riemannian metric on
M and take E0 =

⊕
Ω2i, E1 =

⊕
Ω2i+1, D the “Euler characteristic operator”

D = d + d∗, so IndD = χ(M) by the Hodge Theorem, while L2- Ind D̃ is the
alternating sum of the L2-Betti numbers,

∑
(−1)iβi. Thus we obtain an analytic

proof of the equality
∑

(−1)iβi = χ(M), for which a combinatorial proof was
given in Exercise 1.4.4.

Another application comes from taking M closed, connected, and oriented,
of dimension 4k. Then harmonic forms in the middle degree 2k can be split
into ±1 eigenspaces for the Hodge ∗-operator, and so the middle Betti number
b2k splits as b+2k + b−2k. The signature of M can be defined to be the difference
b+2k − b−2k. This can be identified with the signature of the intersection pairing

〈x, y〉 = 〈x ∪ y, [M ]〉
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on H2k(M,R), since if we represent cohomology classes x and y by closed forms
ϕ and ψ, then 〈x, y〉 =

∫
M
ϕ ∧ ψ, while

∫
M
ϕ ∧ ∗ψ is the L2 inner product of ϕ

and ψ, so that the intersection pairing is positive definite on the +1 eigenspace
of ∗ and negative definite on the −1 eigenspace of ∗.

Now as observed by Atiyah and Singer, the signature can also be computed
as the index of the elliptic differential operator D = d + d∗ sending E0 to E1,
where E0 ⊕E1 is a splitting of the complex differential forms defined using the
Hodge ∗-operator as well as the grading by degree. More precisely, E0 and
E1 are the ±1 eigenspaces of the involution τ sending a complex-valued p-form
ω to ip(p−1)+2k ∗ ω. This formula is concocted so that the contributions of p-
forms and (4k − p)-forms will cancel out as long as p 6= 2k, and so that τ = ∗
on forms of middle degree. If we apply Theorem 2.1.1 to this D, we see that
β+

2k − β−
2k = b+2k − b−2k, with the splitting of β2k into ±1 eigenspaces of ∗ defined

similarly. (Once again, the contributions from forms of other degree cancel out.)

Example 2.1.2 Let M be a compact quotient of the unit ball M̃ in C2. Then
M̃ can be identified with the homogeneous space G/K, where G = SU(2, 1) and
K is its maximal compact subgroup U(2). The signature of M must be nonzero
by the “Hirzebruch proportionality principle,”1 since G/K is the noncompact
dual of the compact symmetric space CP2, which has signature 1. Hence the
L2-Betti number β2 of M must be non-zero by the identity β+

2 − β−
2 = signM .

In this case, we have β0 = β4 = 0 by Brooks’ Theorem (Theorem 1.3.5 and
Exercise 1.4.5) and Poincaré duality, since the fundamental group of M is a
lattice in G and is thus non-amenable. And in addition, β1 = β3 = 0 by
Theorem 1.3.6, so as pointed out before, one has β2 = χ(M). Together with
the identities β+

2 − β−
2 = signM and β+

2 + β−
2 = β2, this makes it possible to

compute β±
2 exactly. (Note: for this example, vanishing of the L2-cohomology

in dimensions 6= 2 can also be proved using the representation theory of G, as
in Example 1.3.4.)

2.2 Connes’ Index Theorem for Foliations

Another important application to topology of finite von Neumann algebras is
Connes’ index theorem for tangentially elliptic operators on foliations with an
invariant transverse measure.

2.2.1 Prerequisites

We begin by reviewing a few facts about foliations. A foliation F of a compact
smooth manifold Mn is a partition of M into (not necessarily closed) connected

1This principle asserts that the characteristic numbers of M must be proportional to those
of the compact dual symmetric space CP2, and thus the signature of M is nonzero since
the signature of CP2 is nonzero. The logic behind this is that characteristic numbers are
computed from integrals of universal polynomials in the curvature forms, and these forms
are determined by the structure of the Lie algebra of G, hence agree for the compact and
non-compact symmetric spaces except for a sign.
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submanifolds Lp called leaves, all of some fixed dimension p and codimension
q = n − p.2 The leaves are required to be the integral submanifolds of some
integrable subbundle of TM , which we identify with F itself. Locally, M looks
like Lp × Rq, but it can easily happen that every leaf is dense. See Figure 2.1.
When x and y lie on the same leaf, “sliding along the leaf” along a path in
the leaf from x to y gives a germ of homeomorphisms from a transversal to the
foliation at x to a transversal to the foliation at y, which is called the holonomy.
This holonomy only depends on the homotopy class of the path chosen from x
to y, and so defines a certain connected cover of the leaf, called the holonomy
cover, which is trivial if the leaf is simply connected.

Figure 2.1: Schematic picture of a piece of a typical foliation

For purposes of Connes’ index theorem we will need to do a sort of integration
over the “space of leaves M/F ,” even though this space may not even be T0,
let alone Hausdorff. So we will assume (M,F) has an invariant transverse
measure µ. This is a map µ : (T # M) 7→ µ(T ) from (immersed) q-dimensional
submanifolds of M with compact closure, transverse to the leaves of F , to
the reals. It is required to satisfy countable additivity as well as the invariance
property, that µ assigns the same value to every pair of transversals T1, T2 ↪→M
which are obtained from one another by a holonomy transformation. When the
foliation F is a fibration Lp → Mn → Bq, where the base B can be identified
with the space of leaves, then an invariant transverse measure µ is simply a
measure on B. If the leaves are consistently oriented, then given a p-form on
M , we can integrate it over the leaves, getting a function on the base B, and then
integrate against µ. More generally, without any conditions on F except that it
be orientable, an invariant transverse measure µ defines a closed Ruelle-Sullivan
current [84] Cµ on M of dimension p. To review, a p-current is to a differential
form of degree p what a distribution is to a function; it is a linear functional
on (compactly supported) p-forms. The current Cµ is defined as follows: on
a small open subset of M diffeomorphic to Dp × Dq (with F tangent to the

2Admittedly, there is a problem with the notation here; it seems to imply that the leaves
are all diffeomorphic to one another, but this is not necessarily the case.
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subsets Dp × {pt}), given a p-form ω supported in this set, one has

〈Cµ, ω〉 =

∫ (∫

Dp×{x}

ω
)
dµ(x).

There is a differential ∂ on currents dual to the exterior differential d on forms,
and since Cµ is basically just a smeared out version of integration along the
leaves, one immediately sees that ∂Cµ = 0, so that Cµ defines a de Rham
homology class [Cµ] in Hp(M,R).

From the data M , F , and µ, one can construct (see [17], [16], and [18])
a finite von Neumann algebra A = W ∗(M,F) with a trace τ coming from µ.
Let’s quickly review how this is constructed. When the holonomy covers of the
leaves of F are trivial—for instance, when all leaves are simply connected—
consider the graph G of the equivalence relation ∼ on M of “being on the same
leaf.” In other words, G = {(x, y) ∈ M ×M | x and y on the same leaf}. Note
that G can be identified with a (possibly noncompact) manifold of dimension
n+p = q+2p. The algebra A is then the completion of the convolution algebra
of functions (or to be more canonical, half-densities) on G of compact support,
for the action of this algebra on a suitable Hilbert space defined by µ. The
construction in the general case is similar, except that we replace the graph of
∼ by the holonomy groupoid G, consisting of triples (x, y, [γ]) with x and y on
the same leaf and [γ] a class of paths from x to y all with the same holonomy.3

(In fact usually this nicety doesn’t matter much in the von Neumann algebra
context since leaves for which the holonomy cover is trivial are “generic”—see
[11], Theorem 2.3.12.)

Now suppose there is a differential operator D on M which only involves
differentiation in directions tangent to the leaves and is elliptic when restricted
to any leaf. (Examples: the Euler characteristic operator or the Dirac operator
“along the leaves.”) Such an operator is called tangentially elliptic. Since the
leaves are usually not compact, we can’t compute an index for the restriction
of D to one leaf. But since M , the union of the leaves, is compact, it turns
out one can make sense of a numerical index Indτ D for D. In the special case

where F has closed leaves, the foliation is a fibration Lp → M
proj
−−→ Xq, and µ

is a probability measure on X, this reduces to Indτ D =
∫

X
Ind (D|Lx

) dµ(x),

where Lx = proj−1(x). In general, Indτ D is roughly the “average with respect
to µ” of the L2-index of D|Lx

, as x runs over the “space of leaves.” Here we
give each leaf the Riemannian structure defined by a choice of metric on the
bundle F .

Example 2.2.1 Let M1 and M2 be compact connected manifolds, and let π
be the fundamental group of M2. If π acts on M1 × M̃2 with trivial action on
the first factor and the usual action on the second factor, then the quotient is
M1×(M̃2/π) = M1×M2. But suppose we take any action of π on M1 and then

take the diagonal action of π on M1×M̃2. Then M = (M1×M̃2)/π is compact,

3One has to be a little careful what one means by this when G is non-Hausdorff, but the
general idea is still the same even in this case.
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and projection to the second factor gives a fibration onto M2 with fiber M1. But
M is also foliated by the images of {x}×M̃2, usually non-compact. A measure µ
on M1 invariant under the action of π is an invariant transverse measure for this
foliation F . If D is the Euler characteristic operator along the leaves and all the
leaves are ∼= M̃2, then Indτ D just becomes the average L2-Euler characteristic
of M̃ , the alternating sum of the L2-Betti numbers, and Connes’ Theorem will
reduce to Atiyah’s.

2.2.2 Connes’ Theorem

Theorem 2.2.2 (Connes [14], [17]) Let (M,F) be a compact foliated mani-
fold with an invariant transverse measure µ, and let W ∗(M,F) be the associated
von Neumann algebra with trace τ coming from µ. Let

D : C∞(M,E0) → C∞(M,E1)

be elliptic along the leaves. Then the L2 kernels of

P =

(
0 D∗

D 0

)

on the various leaves assemble to a (graded) Hilbert W ∗(M,F)-module K0⊕K1,
and

Indτ D = dimτ K0 − dimτ K1 =

∫
Indtop σ(D) dµ,

where σ(D) denotes the symbol of D and the “topological index” Indtop is com-
puted from the characteristic classes of σ(D) just as in the usual Atiyah-Singer
index theorem.

We omit the proof, which is rather complicated if one puts in all the details
(but see [14], [17], and [64]). However, the basic outline of the proof is similar to
that for Theorem 2.1.1, except that one must replace the group von Neumann
algebra by the von Neumann algebra of the measured foliation.

2.3 An Application to Uniformization

If we specialize the Connes index theorem to the Euler characteristic operator
along the leaves for foliations with 2-dimensional leaves, it reduces to:

Theorem 2.3.1 (Connes) Let (M,F) be a compact foliated manifold with 2-
dimensional leaves and F oriented. Then for every invariant transverse mea-
sure µ, the µ-average of the L2-Euler characteristic of the leaves is equal to
〈e(F), [Cµ]〉, where e(F) ∈ H2(M,Z) is the Euler class of the oriented 2-plane
bundle associated to F , and [Cµ] ∈ H2(M,R) is the Ruelle-Sullivan class at-
tached to µ.
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The result also generalizes to compact laminations with 2-dimensional leaves.
(That means we replace M by any compact Hausdorff space X locally of the
form R2×T , where T is allowed to vary.) The only difference in this case is that
we have to use tangential de Rham theory. This variant of Connes’ Theorem is
explained in [64].

Corollary 2.3.2 Suppose (X,F) is a compact laminated space with 2-dimen-
sional oriented leaves and a smooth Riemannian metric g. Let ω be the curvature
2-form of g. If there is an invariant transverse measure µ with 〈[ω], [Cµ]〉 > 0,
then F has a set of closed leaves of positive µ-measure. If there is an invari-
ant transverse measure µ with 〈[ω], [Cµ]〉 < 0, then F has a set of (confor-
mally) hyperbolic leaves of positive µ-measure. If all the leaves are (conformally)
parabolic, then 〈[ω], [Cµ]〉 = 0 for every invariant transverse measure.

Proof. By Chern-Weil theory, the de Rham class of ω
2π represents the Euler

class of F . So by Theorem 2.3.1, 〈[ω], [Cµ]〉 is the µ-average of the L2-Euler
characteristic of the leaves. The only oriented 2-manifold with positive L2-Euler
characteristic is S2. Every hyperbolic Riemann surface has negative L2-Euler
characteristic. And every parabolic Riemann surface (one covered by C with
the flat metric) has vanishing L2-Euler characteristic. �

This has been used in:

Theorem 2.3.3 (Ghys [33]) Under the hypotheses of Corollary 2.3.2, if every
leaf is parabolic, then (X,F , g) is approximately uniformizable, i.e., there are
real-valued functions un (smooth on the leaves) with the curvature form of eung
tending uniformly to 0.

Note incidentally that the reason for using the curvature form here, as opposed
to the Gaussian curvature, is that the form, unlike the Gaussian curvature, is
invariant under rescaling of the metric by a constant factor.
Sketch of Proof. The proof depends on two facts about 2-dimensional Rieman-
nian geometry. First of all, if g is a metric on a surface, and if K is its curvature,
then changing g to the conformal metric eug changes the curvature form K dvolg
to K ′dvoleug = (K − ∆u) dvolg, where ∆ is the Laplacian (normalized to be a
negative operator). So if K is the curvature function for the lamination and ∆F

is the leafwise Laplacian, it’s enough to show that K is in the uniform closure
of functions of the form ∆F (u). (For then if ∆F (un) → K, the curvature forms
of eung tend to 0.)

The second fact we need is that there exist harmonic measures ν on X,
that is, measures with the property that ν annihilates all functions of the form
∆F (u), and that a function lies in the closure of functions of the form ∆F (u) if
and only if it is annihilated by the harmonic measures. Indeed, by the Hahn-
Banach Theorem, the uniform closure of the functions of the form ∆F (u) is
exactly the set of functions annihilated by measures ν with

∫
X

∆F (u) dν = 0
for all leafwise smooth functions u. But on a subset of X of the form U × T ,
where U is an open subset of a leaf, such measures consist exactly of integrals
(with respect to some measure on T ) of measures of the form h(x) dvol(x) on
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each leaf, with h a harmonic function. Thus, in the case where all the leaves
are parabolic, it turns out (since there are no nonconstant positive harmonic
functions on C) that harmonic measures are just obtained by integrating the
leafwise area measure with respect to an invariant transverse measure. Since
〈K dvolg, [Cµ]〉 = 0 for every invariant transverse measure by Corollary 2.3.2,
the result follows. �

Another known fact is:

Theorem 2.3.4 (Candel [10]) Under the hypotheses of Corollary 2.3.2, if ev-
ery leaf is hyperbolic, then (X,F , g) is uniformizable, i.e., there is a real-valued
function u (smooth along the leaves) with eug hyperbolic on each leaf.

2.4 Exercises

Exercise 2.4.1 Let M be a compact Kähler manifold of complex dimension n.
Then each Betti number br(M) splits as br(M) =

∑
p+q=r h

p,q(M), where the
Hodge number hp,q(M) is the dimension of the part of the de Rham cohomology
in dimension r coming from forms of type (p, q) (i.e., locally of the form f dz1 ∧
· · ·∧dzp∧dzp+1∧· · ·∧dzp+q). And

∑
q(−1)qh0,q(M), the index of the operator

∂ + ∂
∗

on forms of type (0, ∗), graded by parity of the degree, turns out to
be given by the Todd genus Td(M) [41]. For example, if M is a compact
Riemann surface (Kähler manifold of complex dimension 1) of genus g, then
h1,0(M) = h0,1(M) = g and Td(M) = 1 − g. Apply the Atiyah L2-index
theorem and see what it says about the L2 Hodge numbers (associated to the
universal cover). For example, compute the L2 Hodge numbers when M is a
compact Riemann surface of genus g ≥ 1 (see Example 1.3.4).

Exercise 2.4.2 Part of the idea for this problem comes from [2] and [3], though
we have been able to simplify things considerably by restricting to the easiest
special case. Suppose G = SL(2,R) and K = SO(2). Then attached to each
character of K, which we can think of as being given by an integer parameter
n by eiθ 7→ einθ, eiθ ∈ SO(2) ∼= S1, is a homogeneous holomorphic line bundle

L̃n over M̃ = G/K. Let π be a discrete cocompact subgroup of G, so that
G/K � π\G/K is the universal cover of a compact Riemann surface M of

genus g > 1. Note that L̃n descends in a natural way to a holomorphic line
bundle Ln over M . Apply the L2-index theorem, together with the classical
Riemann-Roch Theorem for Ln, to compute the L2-index of the ∂ operator on
the line bundle L̃n.

Then combine this result with a vanishing theorem to show that L̃n has L2

holomorphic sections (with respect to the G-invariant measure on G/K) if and
only if n ≥ 2. Here is a sketch of the proof of the vanishing theorem. Let g

and k be the complexified Lie algebras of G and of K, respectively, and suppose
the Hilbert space Hn of L2 holomorphic sections of Ln is non-zero. We have a
splitting g = k ⊕ p ⊕ p, with p corresponding to the holomorphic tangent space
of G/K, and p corresponding to the antiholomorphic tangent space. Also, k is
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a Cartan subalgebra of g ∼= sl(2,C) and p, p are its root spaces. By definition,
we have

Hn = {f ∈ L2(G) : f(gk) = k−nf(g), g ∈ G, k ∈ K ∼= S1, dρ(p)f = 0}.

Here ρ is the right regular representation, and G acts on Hn by the left regular
representation λ. Then Hn carries a unitary representation of G and (because
of the Cauchy integral formula) must be a “reproducing kernel” Hilbert space;
that is, there must be a distinguished vector ξ ∈ Hn such that 〈s, ξ〉 = s(e) for
all s ∈ Hn. (Here e denotes the identity element of G, which corresponds to
0 ∈ C in the unit disk model of G/K.) Since Hn 6= 0, ξ can’t vanish. It turns
out that ξ ∈ Hn is a “lowest weight vector,” an eigenvector for k (corresponding
to the character eiθ 7→ einθ of K) that is killed by p. This determines the
action of g, hence of G, on ξ, and the vanishing theorem is deduced from the
requirement that ξ lie in L2. (See for example [53] for more details.)

Exercise 2.4.3 Let M be a compact manifold with H2(M,R) = 0, and sup-
pose M admits a foliation with 2-dimensional leaves and an invariant transverse
measure. Deduce from Corollary 2.3.2 that the “average L2 Euler characteris-
tic” of the leaves must vanish, and in particular, that the leaves cannot all
be hyperbolic (uniformized by the unit disk). (Compare the combination of
Theorems 12.3.1 and 12.5.1 in [11].)

Exercise 2.4.4 (Connes [17], §4) Let Λ1 and Λ2 be lattices in C (that is,
discrete subgroups each of rank 2) and assume that Λ1 ∩ Λ2 = ∅. Consider
the 4-torus M = (C/Λ1) × (C/Λ2) and let pj , j = 1, 2 be the projection of
M onto C/Λj . Fix points z1, z2 ∈ C and let E1 and E2 be the holomorphic
line bundles on (C/Λj) attached to the divisors −[z1] and [z2], respectively.
Then let E = p∗1(E1) ⊗ p∗2(E2). Consider the foliation F of M obtained by
pushing down the foliation of the universal cover C2 by the complex planes
{(z, w + z) : z ∈ C}, w ∈ C. The leaves of F may be identified with copies
of C. Since this foliation is linear, it has a transverse measure given by Haar
measure on a 2-torus transverse to the leaves of F . Let D be the ∂ operator
along the leaves, acting on E. Then on a leaf L = im{(z, w + z) : z ∈ C}, a
holomorphic section of E can be identified with a meromorphic function on C
with all its poles simple and contained in z + Λ1 for some z and with zeros at
points of Λ2. Apply the foliation index theorem to deduce an existence result
about such meromorphic functions in L2.
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Group C∗-Algebras, the

Mishchenko-Fomenko

Index Theorem,

and Applications to

Topology

3.1 The Mishchenko-Fomenko Index

The last two chapters have been about applications of von Neumann alge-
bras to topology. In this chapter, we start to talk about applications of C∗-
algebras. First we recall that a (complex) commutative C∗-algebra is always
of the form C0(Y ), where Y is a locally compact (Hausdorff) space, so that
the study of (complex) commutative C∗-algebras is equivalent to the study of
locally compact spaces. Real commutative C∗-algebras are only a bit more
complicated; they correspond to locally compact spaces (associated to the com-
plexification) together with an involutive homeomorphism (associated to the
action of Gal(C/R)). These were called Real spaces by Atiyah. We also recall
that by Swan’s Theorem (see for example [47], Theorem I.6.18), the sections
of a vector bundle over a compact Hausdorff space X are a finitely generated
projective module over C(X), and conversely.

Definition 3.1.1 Let A be a C∗-algebra (over R or C) with unit, and let X be
a compact space. An A-vector bundle over X will mean a locally trivial bundle
over X whose fibers are finitely generated projective (right) A-modules, with
A-linear transition functions.

Example 3.1.2 If A = R or C, an A-vector bundle is just a usual vector bundle.
If A = C(Y ), an A-vector bundle over X is equivalent to an ordinary vector

25
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bundle over X × Y . This is proved by the same method as Swan’s Theorem, to
which the statement reduces if X is just a point.

Definition 3.1.3 Let A be a C∗-algebra and let E0, E1 be A-vector bundles
over a compact manifold M . An A-elliptic operator

D : C∞(M,E0) → C∞(M,E1)

will mean an elliptic A-linear ψDO from sections of E0 to sections of E1. Such
an operator extends to a bounded A-linear map on suitable Sobolev spaces
(Hilbert A-modules) H0 and H1. One can show [62] that this map is an A-
Fredholm operator, i.e., one can find a decomposition

H0 = H′
0 ⊕H′′

0 , H1 = H′
1 ⊕H′′

1 ,

H′′
0 and H′′

1 finitely generated projective,

D : H′
0

∼=
−→ H′

1, D : H′′
0 → H′′

1 .

This means that “up to A-compact perturbation” the kernel and cokernel of D
are finitely generated projective A-modules. The Mishchenko-Fomenko index
of D (see [62]) is

IndD = [H′′
0 ] − [H′′

1 ],

computed in the group of formal differences of isomorphism classes of such
modules, K0(A). (See Exercise 3.5.1 below.)

3.2 Flat C∗-Algebra Bundles and the Assembly

Map

If X is a compact space and A is a C∗-algebra with unit, the group of for-
mal differences of isomorphism classes of A-vector bundles over X is denoted
K0(X;A). The following is analogous to Swan’s Theorem.

Proposition 3.2.1 If X is a compact space and A is a C∗-algebra with unit,
then K0(X;A) is naturally isomorphic to K0(C(X) ⊗A).

Sketch of Proof. Suppose E is an A-vector bundle over X. Then the space
Γ(X,E) of continuous sections of E comes with commuting actions of C(X)
and of A. As such, it is a module for the algebraic tensor product; we will
show from the local triviality that it is in fact a module for the C∗-tensor
product. Now just as in the case of ordinary vector bundles, one shows that E
is complemented, i.e., that there is another A-vector bundle F such that E ⊕F
is a trivial bundle with fibers that are finitely generated free A-modules. Thus

Γ(X,E) ⊕ Γ(X,F ) ∼= Γ(X,E ⊕ F )

∼= Γ(X,X ×An) ∼= C(X,A)n ∼=
(
C(X) ⊗A

)n
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for some n. Hence Γ(X,E) is a finitely generated projective (C(X)⊗A)-module.
Now it’s clear that the Grothendieck groups of A-vector bundles and of finitely
generated projective (C(X) ⊗A)-modules coincide. �

Definition 3.2.2 Let X be a compact space, X̃→ X a normal covering with
covering group π. Let C∗

r (π) be the reduced group C∗-algebra of π (the com-
pletion of the group ring in the operator norm for its action on L2(π)). The
universal C∗

r (π)-bundle over X is

VX = X̃ ×π C
∗
r (π) → X.

This is clearly a C∗
r (π)-vector bundle over X. As such, by Proposition 3.2.1 it

has a class [VX ] ∈ K0(X;C∗
r (π)), which is pulled back (via the classifying map

X → Bπ) from the class of

V = Eπ ×π C
∗
r (π) → Bπ

in K0(Bπ;C∗
r (π)). Here Bπ is the classifying space of π, a space (with the

homotopy type of a CW complex) having π as its fundamental group, and with
contractible universal cover Eπ. Such a space always exists and is unique up
to homotopy equivalence. Furthermore, by obstruction theory, every normal
covering with covering group π is pulled back from the “universal” π-covering
Eπ → Bπ. “Slant product” with [V] (a special case of the Kasparov product)
defines the assembly map

A : K∗(Bπ) → K∗(C
∗
r (π)).

(There is a slight abuse of notation here. Bπ may not be compact, but it can
always be approximated by finite CW complexes. So if there is no finite model
for Bπ, K∗(Bπ) is to be interpreted as the direct limit of K∗(X) as X runs over
the finite subcomplexes of Bπ. This direct limit is independent of the choice of
a model for Bπ.)

Note that since the universal C∗
r (π)-bundle over X or Bπ is canonically

trivialized over the universal cover, it comes with a flat connection, that is, a
notion of what it means for a section to be locally flat. (A locally flat section
near x is one which in a small evenly covered neighborhood lifts to a constant
section U → C∗

r (π).)

3.3 Kasparov Theory and the Index Theorem

The formalism of Kasparov theory(see [5] or [40]) attaches, to an elliptic operator
D on a manifold M , a K-homology class [D] ∈ K∗(M). If M is compact, the
collapse map c : M → pt is proper and IndD = c∗([D]) ∈ K∗(pt).

Now if E is an A-vector bundle over M and D is an elliptic operator over M ,
we can form “D with coefficients in E,” an A-elliptic operator. The Mishchenko-
Fomenko index of this operator is computed by pairing

[D] ∈ K∗(M) with [E] ∈ K0(M ;A).
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In particular, if M̃ → M is a normal covering of M with covering group π,
then we can form D with coefficients in VX , and its index is A◦ u∗([D]), where
u : M → Bπ is the classifying map for the covering.

Conjecture 3.3.1 (Novikov Conjecture) The assembly map A : K∗(Bπ) →
K∗(C

∗
r (π)) is rationally injective for all groups π, and is injective for all torsion-

free groups π.

This is quite different from the original form of Novikov’s conjecture, though
it implies it. Therefore Conjecture 3.3.1 is often called the Strong Novikov
Conjecture. We will see the exact connection with the original form of the con-
jecture shortly. Stronger than Conjecture 3.3.1 is the Baum-Connes Conjecture,
which gives a conjectural calculation of K∗(C

∗
r (π)).1 When π is torsion-free, the

Baum-Connes Conjecture amounts to the statement that A is an isomorphism.
There are no known counterexamples to Conjecture 3.3.1, or for that matter to
the Baum-Connes Conjecture for discrete groups (though it is known to fail for
some groupoids). Conjecture 3.3.1 is known for discrete subgroups of Lie groups
([49], [48]), amenable groups [39], hyperbolic groups [50], and many other classes
of groups.

3.4 Applications

1. The L2-Index Theorem and Integrality of the Trace. The connec-
tion with Atiyah’s Theorem from Chapter 2 is as follows. Suppose D is an
elliptic operator on a compact manifold M , and M̃ → M is a normal cover-
ing of M with covering group π. The group C∗-algebra C∗

r (π) embeds in the
group von Neumann algebra, and the trace τ then induces a homomorphism
τ∗ : K0(C

∗
r (π)) → R. The image under τ∗ of the index of D with coefficients in

C∗
r (π) can be identified with the L2-index of D̃, the lift of D to M̃ . Atiyah’s

Theorem thus becomes the assertion that the following diagram commutes:

K0(M)

c∗

��

u∗ // K0(Bπ)

A

��
K0(pt) = Z

�
t

''OOOOOOOOOOOO
K0(C

∗
r (π))

τ∗

��
R.

1The precise statement is that an assembly map ABC : Kπ

∗
(Eπ) → K∗(C∗

r
(π)) is an iso-

morphism. Here Eπ is a contractible CW complex on which G acts properly (though not
necessarily freely), and Kπ

∗
is equivariant K-homology. When G is torsion-free, Eπ = Eπ,

Kπ

∗
(Eπ) = Kπ

∗
(Eπ) = K∗(Bπ), and ABC = A. In general, one has a π-equivariant map

Eπ → Eπ, and A factors through ABC.
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This has the consequence, not obvious on its face, that τ∗ takes only integral
values on the image of the assembly map.2 Thus if the assembly map is sur-
jective, as when π is torsion-free and the Baum-Connes Conjecture holds for π,
then τ∗ : K0(C

∗
r (π)) → R takes only integral values. This in particular implies

the Kaplansky-Kadison Conjecture, that C∗
r (π) has no idempotents other than

0 or 1 [94]. The reason is that if e = e2 ∈ C∗
r (π), and if 0 � e � 1, then e defines

a class in K0(C
∗
r (π)) and 0 < τ(e) < 1 = τ(1), contradicting our integrality

statement.
2. Original Version of the Novikov Conjecture. Consider the signa-

ture operator D on a closed oriented manifold M 4k. This is constructed (see
page 18) so that IndD is the signature of M , i.e., the signature of the form

〈x, y〉 = 〈x ∪ y, [M ]〉

on middle cohomologyH2k(M,R). The signature is obviously an oriented homo-
topy invariant, since it only depends on the structure of the cohomology ring (de-
termined by the homotopy type) and on the choice of fundamental class [M ] (de-
termined by the orientation). Hirzebruch’s formula says signM = 〈L(M), [M ]〉,
where L(M) is a power series in the rational Pontryagin classes, the Poincaré
dual of Ch[D]. Here Ch: K0(M) → H∗(M,Q) is the Chern character, a natural
transformation of homology theories (and in fact a rational isomorphism). The
unusual feature of Hirzebruch’s formula is that the rational Pontryagin classes,
and thus the L-class, are not homotopy invariants of M ; only the term in L(M)
of degree equal to the dimension of M is a homotopy invariant. For example, it
is known from surgery theory how to construct “fake” complex projective spaces
homotopy equivalent to CPm, m ≥ 3, with wildly varying Pontryagin classes.

If u : M → Bπ for some discrete group π (such as the fundamental group
of M), u∗(Ch[D]) ∈ H∗(Bπ,Q) is called a higher signature of M , and Novikov
conjectured that, like the ordinary signature (the case π = 1), it is an oriented
homotopy invariant. The conjecture follows from injectivity of the assembly
map, since Kasparov ([49], §9, Theorem 2) and Mishchenko ([63], [61]) showed
that A ◦ u∗([D]) is an oriented homotopy invariant. Another proof of the ho-
motopy invariance of A ◦ u∗([D]) may be found in [46]. For much more on the
background and history of the Novikov Conjecture, see [30].

3. Positive Scalar Curvature. An oriented Riemannian manifold Mn

has a natural principal SO(n)-bundle attached to it, the (oriented) orthonormal
frame bundle, P →M . The fiber of P over any point x ∈M is by definition the
set of oriented orthonormal bases for the tangent space TxM , and SO(n) acts
simply transitively on this set. Now SO(n) has a double cover Spin(n) (which
if n ≥ 3 is also the universal cover), and a lifting of P → M to a principal

Spin(n)-bundle P̂ →M is called a spin structure on M . When M is connected,
it is fairly easy to show that such a structure exists if and only if the second

2Here we are using the fact that every element of K0(Bπ) lies in the image of K0 of some

manifold M with a map M → Bπ. This can be deduced from “Conner-Floyd type” theorems
about the relationship between K-homology and bordism. Of course in the case where Bπ

can be chosen to be a compact manifold, this fact is obvious.
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Stiefel-Whitney class w2(M) vanishes in H2(M,Z/2), and that H1(M,Z/2) acts
simply transitively on the set of spin structures (compatible with a fixed choice
of orientation) ([54], Chapter II, §2). If Mn is a closed spin manifold, then M
carries a special first-order elliptic operator, the [Cliffn(R)-linear] Dirac operator
D ([54], Chapter II, §7), with a class [D] ∈ KOn(M). The operator D depends
on a choice of Riemannian metric, though its K-homology class is independent
of the choice. Lichnerowicz [55] proved that

D2 = ∇∗∇ +
κ

4
, (3.1)

where κ is the scalar curvature of the metric. Thus if κ > 0, the spectrum of D
is bounded away from 0 and IndD = 0 in

KOn(pt) =





Z, n ≡ 0 mod 4,

Z/2, n ≡ 1 or 2 mod 8,

0, otherwise.

Gromov and Lawson [35] established the fundamental tools for proving a partial
converse to this statement. Their work was completed by Stolz, who proved:

Theorem 3.4.1 (Stolz [91]) If Mn is a closed simply connected spin manifold
with Dirac operator class [D] ∈ KOn(M), and if n ≥ 5, then M admits a metric
of positive scalar curvature if and only if IndD = 0 in KOn(pt).

What if M is not simply connected? Then Gromov-Lawson ([36], [37]) and
Schoen-Yau ([88], [87], [89]) showed there are other obstructions coming from the
fundamental group, and Gromov-Lawson suggested that the “higher index” ofD
is responsible. Rosenberg ([75], [76], [80]) then pointed out that the Mishchenko-
Fomenko Index Theorem is an ideal tool for verifying this.

Theorem 3.4.2 (Rosenberg) Suppose M is a closed spin manifold and u : M
→ Bπ classifies the universal cover of M . If M admits a metric of positive scalar
curvature and if the (strong) Novikov Conjecture holds for π, then u∗([D]) = 0
in KOn(Bπ).

Sketch of Proof. Suppose M admits a metric of positive scalar curvature.
Consider the Dirac operator DV with coefficients in the universal C∗

r (π)-bundle
VM . As we remarked earlier, the bundle VM has a natural flat connection. If
we use this connection to define DV , then Lichnerowicz’s identity (3.1) will still
hold with DV in place of D, since there is no contribution from curvature of the
bundle. Thus κ > 0 implies IndDV = A(u∗([D])) = 0. Thus if A is injective,
we can conclude that u∗([D]) = 0 in KOn(Bπ). �

For some torsion-free groups, the converse is known to hold for n ≥ 5, general-
izing Theorem 3.4.1. See [80] for details.

Conjecture 3.4.3 (Gromov-Lawson) A closed aspherical manifold cannot
admit a metric of positive scalar curvature.
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Theorem 3.4.2 shows that the Strong Novikov Conjecture implies Conjecture
3.4.3, at least for spin manifolds.

For groups with torsion, the assembly map is usually not a monomorphism
(see Exercise 3.5.2), so the converse of Theorem 3.4.2 is quite unlikely. However,
for spin manifolds with finite fundamental group, it is possible (as conjectured
in [77]) that vanishing of A(u∗([D])) = 0 is necessary and sufficient for positive
scalar curvature, at least once the dimension gets to be sufficiently large. Since
not much is known about this, it is convenient to simplify the problem by
“stabilizing.”’

Definition 3.4.4 Fix a simply connected spin manifold J 8 of dimension 8 with
Â-genus 1. (Such a manifold is known to exist, and Joyce [43] constructed an
explicit example with Spin(7) holonomy.) Taking a product with J does not
change the KO-index of the Dirac operator. Say that a manifold M stably
admits a metric of positive scalar curvature if there is a metric on M×J×· · ·×J
with positive scalar curvature, for sufficiently many J factors. In support of this
definition, we have:

Proposition 3.4.5 A simply connected closed manifold Mn of dimension n 6=
3, 4 stably admits a metric of positive scalar curvature if and only if it actually
admits a metric of positive scalar curvature.

Sketch of Proof. We may as well assume n ≥ 5, since if n ≤ 2, then M is
diffeomorphic to S2 and certainly has a metric of positive scalar curvature.
There are two cases to consider. If M admits a spin structure, then by Theorem
3.4.1, M admits a metric of positive scalar curvature if and only if the index
of D vanishes in KOn. But if the index is non-zero in KOn, then M does not
even stably admit a metric of positive scalar curvature, since the KOn-index of
Dirac is the same for M × J × · · · × J as it is for M . If M does not admit a
spin structure, then Gromov and Lawson [35] showed M always admits a metric
of positive scalar curvature, and a fortiori it stably admits a metric of positive
scalar curvature. �

For finite fundamental group, the best general result is:

Theorem 3.4.6 (Rosenberg-Stolz [79]) Let Mn be a spin manifold with fi-
nite fundamental group π, with Dirac operator class [D], and with classifying
map u : M → Bπ for the universal cover. Then M stably admits a metric of
positive scalar curvature if and only A◦u∗([D]) = 0 in KOn(C∗

r (π)). (Of course,
for π finite, C∗

r (π) = R[π].)

This has been generalized by Stolz to those groups π for which the Baum-Connes
assembly map ABC in KO is injective. This is a fairly large class including all
discrete subgroups of Lie groups.

3.5 Exercises

Exercise 3.5.1 (Mishchenko-Fomenko) Let A be a C∗-algebra. Suppose
that a bounded A-linear map D : H0 → H1 between two Hilbert A-modules is
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A-Fredholm, i.e., has a decomposition as in Definition 3.1.3. Show that IndD ∈
K0(A) is well-defined, i.e., does not depend on the choice of decomposition. On
the other hand, show by example that it is not necessarily true that D has
closed range, and hence it is not necessarily true that we can define IndD as
[kerD] − [cokerD].

Exercise 3.5.2 Let G be a finite group of order n. Show that

C∗
r (G) = CG ∼=

⊕

σ∈ bG

Mdim(σ)(C), and K0(C
∗
r (G)) ∼= Zc, K1(C

∗
r (G)) = 0,

where Ĝ is the set of irreducible representations of G and c = #(Ĝ) is the
number of conjugacy classes in G. (This is all for the complex group algebra.)
Since K0(BG) is a torsion group, deduce that the assembly map A : K∗(BG) →
K∗(C

∗
r (G)) is identically zero in all degrees. (This is not necessarily the case for

the assembly map on KO in degrees 1, 2, 5, 6 mod 8 for the real group ring if
G is of even order—see Exercise 3.5.6 below and [79].) On the other hand, the
Baum-Connes Conjecture is true for this case (for more or less trivial reasons—
here EG = pt and the definition of KG

0 (pt) makes it coincide with K0(C
∗
r (G))).

Compute the trace map τ∗ : K0(C
∗
r (G)) → R for this example, and show that

it sends the generator of K0(C
∗
r (G)) attached to an irreducible representation

σ to dim(σ)
|G| . (Hint: The generator corresponds to a certain minimal idempotent

in CG. Write it down explicitly (as a linear combination of group elements),
using the Schur orthogonality relations.) Deduce that τ∗

(
K0(C

∗
r (G))

)
= 1

|G|Z,

the rational numbers with denominator a divisor of |G|.

Exercise 3.5.3 Let Γ be the infinite dihedral group, the semidirect product
Zo{±1}, where {±1} acts on Z by multiplication. Show by explicit calculation
that C∗

r (Γ) can be identified with the algebra

{
f ∈ C

(
[0, 1],M2(C)

)
: f(0) and f(1) are diagonal matrices

}
.

(To show this, identify C∗
r (Γ) with the crossed product C(S1) o {±1}, where

{±1} acts on C∗
r (Z) ∼= C(S1) by complex conjugation. The orbit space S1/{±1}

can be identified with an interval. Interior points of this interval correspond to
irreducible representations of Γ of dimension 2, and over each endpoint there
are two irreducible representations of Γ, each of dimension 1.

Then show that the range of the trace map τ∗ : K0(C
∗
r (Γ)) → R is the half-

integers 1
2Z = {0,± 1

2 ,±1,± 3
2 , · · · }.

This example and others like it, along with Exercise 3.5.2, led to the conjec-
ture ([4], p. 21) that for an arbitrary group G, τ∗

(
K0(C

∗
r (G))

)
is the subgroup

of Q generated by the numbers 1
|H| , where H is a finite subgroup of G. How-

ever, this conjecture has turned out to be false ([83], [82]), even with K0(C
∗
r (G))

(which in general is inaccessible) replaced by the more tractable image of the
Baum-Connes map ABC. However, it is shown in [60] that the range of the trace
on the image of the Baum-Connes map ABC is contained in the subring of Q
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generated by the reciprocals of the orders of the finite subgroups. In particular,
if the Baum-Connes conjecture holds for G, then the range of the trace lies in
this subring.

Exercise 3.5.4 Suppose Γ is a discrete group and π is a subgroup of Γ of finite
index. Then one has a commuting diagram

K0(Bπ)

��

Aπ //

ι∗

yyssssssssss

K0(C
∗
r (π))

ι∗

��

τ∗ // R

K0(BΓ) //

AΓ

22KΓ
0 (EΓ)

ABC // K0(C
∗
r (Γ))

τ∗ // R.

Here ι∗ is the map induced by the inclusion π ↪→ Γ. But there is also a transfer
map ι∗ backwards from K0(C

∗
r (Γ)) to K0(C

∗
r (π)) which multiplies traces by the

index [Γ : π], since C∗
r (Γ) is a free C∗

r (π)-module of rank [Γ : π]. Similarly,
there is a compatible transfer map ι∗ : K0(BΓ) → K0(Bπ), and ι∗ ◦ ι∗ is an
isomorphism on K0(BΓ) after inverting [Γ : π]. Suppose that the Baum-Connes
Conjecture holds for both π and Γ, so that in this diagram, Aπ and ABC are
isomorphisms. Then what does this imply about integrality of the trace on
K0(C

∗
r (Γ))? Compare with the conjectures discussed in Exercise 3.5.3.

Exercise 3.5.5 Suppose Γ is a discrete group and e = e2 ∈ C[Γ]. Show that
τ(e) must lie in Q, the algebraic closure of Q. Hint [9]: Consider the action of
Gal(C/Q) on C[Γ], as well as the positivity of τ . In fact, it is even proved in [9]
that τ(e) ∈ Q, but this is much harder.

Exercise 3.5.6 Let π = Z/2, a cyclic group of order 2, so that the real group
C∗-algebra R[π] of π is isomorphic to R ⊕ R and the classifying space Bπ =
RP∞. Show that the assembly map A : KO1(Bπ) → KO1(R[π]) ∼= Z/2⊕Z/2 is
surjective. Hints: For the summand corresponding to the trivial representation,
you don’t have to do any work, because of the commutative diagram

KO∗(pt)
��

��

A{1}

∼=
// KO∗(R)

��

��
KO∗(Bπ)

Aπ // KO∗(R ⊕ R).

For the other summand, make use of the commutative diagram

KO∗(S
1)

��

AZ

∼=
// KO∗(C

∗
r (Z))

��
KO∗(Bπ)

Aπ // KO∗(R[π]),



34 Chapter 3. Group C∗-Algebras in Topology

where the vertical arrows are induced by the “reduction mod 2” map Z � Z/2.

Exercise 3.5.7 Let Mn be a smooth compact manifold and let Y be some
compact space. Suppose D : x 7→ Dx is a continuously varying family of elliptic
operators on M , parameterized by Y . Show that D defines a C(Y )-elliptic
operator over M , and thus has a C(Y )-index in the sense of Mishchenko and
Fomenko. (This is the same as the “families index” of Atiyah and Singer.) Also
show that if dim kerDx and dim kerD∗

x remain constant, so that x 7→ kerDx

and x 7→ kerD∗
x define vector bundles kerD and kerD∗ over X, then IndD =

[kerD] − [kerD∗] in K0(C(Y )) ∼= K0(Y ). (The isomorphism here is given by
Swan’s Theorem.)



Chapter 4

Other C∗-Algebras and

Applications in Topology:

Group Actions, Foliations,

Z/k-Indices, and Coarse

Geometry

4.1 Crossed Products and Invariants of Group

Actions

If a (locally compact) group G acts on a locally compact space X, one can form
the transformation group C∗-algebra or crossed product C∗(G,X) or C0(X)oG.
The definition is easiest to explain when G is discrete; then C∗(G,X) is the
universal C∗-algebra generated by a copy of C0(X) and unitaries ug, g ∈ G,
subject to the relations that

uguh = ugh, ugfu
∗
g = g · f for g, h ∈ G, f ∈ C0(X). (4.1)

Here g · f(x) = f(g−1 · x). In general, C∗(G,X) is the C∗-completion of the
twisted convolution algebra of C0(X)-valued continuous functions of compact
support on G, and its multiplier algebra still contains copies of C0(X) and of G
satisfying relations (4.1). (In fact, products of an element of C∗(G) and of an
element of C0(X), in either order, lie in the crossed product and are dense in it.)
When G acts freely and properly on X, C∗(G,X) is strongly Morita equivalent
to C0(G/X).1 It thus plays the role of the algebra of functions on G/X, even

1(Strong) Morita equivalence (see [71]) is one of the most useful equivalence relations on the
class of C∗-algebras. When A and B are separable C∗-algebras, it has a simple characterization

35
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when the latter is a “bad” space, and captures much of the equivariant topology,
as we see from:

Theorem 4.1.1 (Green-Julg [44]) If G is compact, there is a natural iso-
morphism

K∗(C
∗(G,X)) ∼= K−∗

G (X).

There are many other results relating the structure of C∗(G,X) to the topology
of the transformation group (G,X); the reader interested in this topic can see
the surveys [68], [69], and [66] for an introduction and references. In this chapter
we will only need the rather special cases where either G is compact or else G
acts locally freely (i.e., with finite isotropy groups).

Definition 4.1.2 An n-dimensional orbifold X is a space covered by charts
each homeomorphic to Rn/G, where G is a finite group (which may vary from
chart to chart) acting linearly on Rn, and with compatible transition functions.
A smooth orbifold if defined similarly, but with the transition functions required
to lift to be C∞ on the open subsets of Euclidean space. The most obvious kind
of example is a quotient of a manifold by a locally linear action of a finite group.
But not every orbifold, not even every compact smooth orbifold, is a quotient
of a manifold by a finite group action. (The simplest counterexample or “bad
orbifold” is the “teardrop” X, shown in Figure 4.1. Here the bottom half of
the space is a hemisphere, and the top half is the quotient of a hemisphere by
a cyclic group acting by rotations around the pole. If X were of the form M/G
with M a manifold and G finite, then M would have to be S2, and we run afoul
of the fact that any nontrivial orientation-preserving diffeomorphism of S2 of
finite order has to have at least two fixed points, by the Lefschetz fixed-point
theorem.)

Figure 4.1: The teardrop

[8]: A and B are strongly Morita equivalent if and only if A ⊗ K ∼= B ⊗ K, where K is the
C∗-algebra of compact operators on a separable, infinite-dimensional Hilbert space.
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On a smooth orbifold X, we have a notion of Riemannian metric, which on a
patch looking like Rn/G, G finite, is simply a Riemannian metric on Rn invariant
under the action of G. Similarly, once a Riemannian metric has been fixed, we
have a notion of orthonormal frame at a point. As on a smooth manifold, these
patch together to give the orthonormal frame bundle X̃, and O(n) acts locally

freely on X̃, with X̃/O(n) identifiable with X. C∗
orb(X) = C∗(O(n), X̃) is called

the orbifold C∗-algebra of X. This notion is due to Farsi [28]. (It depends on
the orbifold structure, not just the homeomorphism class of X as a space.) Note
that C∗

orb(X) is strongly Morita equivalent to C0(X) when X is a manifold, or
to C∗(G,M) when X is the quotient of a manifold M by an action of a finite
group G.

An elliptic operator D on a smooth orbifold X (which in each local chart
Rn/G, G a finite group, is a G-invariant elliptic operator on Rn) defines a class
[D] ∈ K−∗(C∗

orb(X)) (which we think of as Korb
∗ (X)). Note that if X is actually

a manifold, this is just K∗(X), by Morita invariance of Kasparov theory. If X
is compact, then as in the manifold case, IndD = c∗([D]) ∈ K∗(pt).

Applying the Kasparov formalism and working out all the terms, one can
deduce ([27], [28], [29]) various index theorems for orbifolds, originally obtained
by Kawasaki [51] by a different method.

4.2 Foliation C∗-Algebras and Applications

Definition 4.2.1 Let Mn be a compact smooth manifold, F a foliation of M
by leaves Lp of dimension p, codimension q = n − p. Then one can define a
C∗-algebra C∗(M,F) encoding the structure of the foliation. (This is the C∗-
completion of the convolution algebra of functions, or more canonically, half-
densities, on the holonomy groupoid.) When the foliation is a fibration L →
M → X, where X is a compact q-manifold, then C∗(M,F) is strongly Morita
equivalent to C(X). Since K-theory is Morita invariant, this justifies thinking
of K∗(C

∗(M,F)) as K−∗(M/F), the K-theory of the space of leaves. When the
foliation comes from a locally free action of a Lie group G on M , then C∗(M,F)
is just the crossed product C∗(G,M).

Introducing C∗(M,F) makes it possible to extend the Connes index theorem
for foliations. If D is an operator elliptic along the leaves, then in general IndD
is an element of the group K0(C

∗(M,F)). If there is an invariant transverse
measure µ, then one obtains Connes’ real-valued index by composing with the
map ∫

dµ : K0(C
∗(M,F)) → R.

Theorem 4.2.2 (Connes-Skandalis [19]) Let (M,F) be a compact (smooth)
foliated manifold and let

D : C∞(M,E0) → C∞(M,E1)
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be elliptic along the leaves. Then IndD ∈ K0(C
∗(M,F)) agrees with a “topo-

logical index” Indtop(D) computed from the characteristic classes of σ(D), just
as in the usual Atiyah-Singer index theorem.

Example 4.2.3 The simplest example of this is when M splits as a product
Y × L, the foliation F is by slices {x} × L, and D is given by a continuous
family of elliptic operators Dx on L, parameterized by the points in Y , just as
in Exercise 3.5.7. Then C∗(M,F) is Morita equivalent to C(Y ), and IndD as in
the Theorem 4.2.2 is exactly the Atiyah-Singer “families index” in K0(C(Y )) =
K0(Y ), which as shown in Exercise 3.5.7 can also be viewed as a case of a
Mishchenko-Fomenko index.

Corollary 4.2.4 (Connes-Skandalis [19], Corollary 4.15) Let (M,F) be a
compact foliated manifold and let D be the Euler characteristic operator along
the leaves. Then IndD is the class of the zeros Z of a generic vector field along
the fibers, counting signs appropriately.2 (Compare the Poincaré-Hopf Theorem,
which identifies the Euler characteristic of a compact manifold with the sum of
the zeros of a generic vector field, counted with appropriate signs.)

The advantage of Theorem 4.2.2 and of Corollary 4.2.4 over Theorem 2.2.2 and
its corollaries is that we don’t need to assume the existence of an invariant
transverse measure, which is quite a strong hypothesis. However, if such a
measure µ exists, the numerical index in the situation of Corollary 4.2.4 is
simply µ(Z).

Example 4.2.5 Let M be a compact Riemann surface of genus g ≥ 2, so that
its universal covering space M̃ is the hyperbolic plane, and its fundamental
group π is a discrete torsion-free cocompact subgroup of G = PSL(2,R). Let

V = M̃ ×π S
2, where π acts on S2 = CP1 by projective transformations (i.e.,

the embedding PSL(2,R) ↪→ PSL(2,C)); V is an S2-bundle over M . Foliate V

by the images of M̃ ×{x}. In this case there is no invariant transverse measure,
since π does not leave any measure on S2 invariant. Nevertheless, IndD is non-
zero in K0(C

∗(V,F)). (It is −2(g − 1) · [S2], where [S2] is the push-forward of
the class of S2 ↪→ V [19], pp. 1173–1174.)

One case of Theorem 4.2.2 that is easier to understand is the case where the
foliation F results from a locally free action of a simply connected solvable
Lie group G on the compact manifold M . As explained before, we then have
C∗(M,F) ∼= C(M) o G. However, because of the structure theory of simply
connected solvable Lie groups, the crossed product by G is obtained by dimG
successive crossed products by R. However, when it comes to crossed products
by R, there is a remarkable result of Connes that can be used for computing the
K-theory. For simplicity we state it only for complex K-theory, though there is
a version for KO as well.

2Think of Z as a manifold transverse to the leaves of F , and take the “push-forward” of
the class of the trivial vector bundle over Z.
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Theorem 4.2.6 (Connes’ “Thom Isomorphism” [15], [70], [22]) Let A be
a C∗-algebra equipped with a continuous action α of R by automorphisms. Then

there are natural isomorphisms K0(A)
∼=
→ K1(AoαR) and K1(A)

∼=
→ K0(AoαR).

Note. Homotope the action α of R on A to the trivial action by considering
αt, αt(s) = α(ts), 0 ≤ t ≤ 1, so α1 = α and α0 is the trivial action. One way of
understanding the theorem is that it says from the point of view of K-theory,
K∗(Aoαt

R) is independent of t, and thus

K∗(Aoα R) ∼= K∗(Aotrivial R) ∼= K∗(A⊗ C∗(R)) ∼= K∗(A⊗ C0(R)),

which can be computed easily by Bott periodicity.
Sketch of Proof. Connes’ method of proof is to show that there is a unique
family of maps φi

α : Ki(A) → Ki+1(Aoα R), i ∈ Z/2, defined for all C∗-algebras
A equipped with an R-action α, and satisfying compatibility with suspension,
naturality, and reducing to the usual isomorphismK0(C) → K1(R) when A = C.
Then these maps have to be isomorphisms, since Takesaki-Takai duality [93]
gives an isomorphism (Aoα R) obα R ∼= A⊗K (here α̂ is the dual action of the

Pontryagin dual R̂ ∼= R of R), and then by the axioms, φi+1
bα ◦ φi

α : Ki(A) →
Ki+2(A) ∼= Ki(A) must coincide with the Bott periodicity isomorphism. The
only real problem is thus the existence and uniqueness. First Connes shows
that if e is a projection in A, there is an action α′ exterior equivalent to α (in
other words, related to it by a 1-cocycle with values in the unitary elements of
the multiplier algebra) that leaves e fixed. Since exterior equivalent actions are
opposite “corners” of an action β of R on M2(A), by Connes’ “cocycle trick,”
the K-theory for their crossed products is the same.3 So if there is a map φ0

α

with the correct properties, φ0
α([e]) is determined via the commuting diagram

K0(A)
φ0

α // K1(Aoα R)

∼=

��
K0(A)

φ0

α′ // K1(Aoα′ R)

Z = K0(C)

[1]7→[e]

OO

φ0
trivial

∼=
// K1(C

∗(R)) = Z.

OO

Here the upward arrows at the bottom are induced by the inclusion C · e ↪→ A.
The axioms quickly reduce all other cases of uniqueness down to this one, so it

3For α and α′ to be exterior equivalent means that α′
t(a) = utαt(a)u∗

t
, for some map

t 7→ ut from R to the unitaries of the multiplier algebra of A such that for each a ∈ A,
t 7→ uta and t 7→ aut are norm-continuous. Then one can manufacture an action of R on
M2(A), the 2 × 2 matrices with entries in A, by the formula

β(t)

„

a11 a12

a21 a22

«

=

„

αt(a11) αt(a12)u∗

t

utαt(a21) α′
t(a22)

«

.
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remains only to prove existence. There are many arguments for this: see [70],
[22], and §10.2.2 and §19.3.6 in [5]. The most elegant argument uses KK-theory,
but even without this one can define φ∗

α to be the connecting map in the long
exact K-theory sequence for the “Toeplitz extension”

0 → (C0(R) ⊗A) oτ⊗α R → (C0(R ∪ {+∞}) ⊗A) oτ⊗α R → Aoα R → 0.

Here τ is the translation action of R on R ∪ {+∞} fixing the point at infinity.
But

(C0(R) ⊗A) oτ⊗α R ∼= (C0(R) ⊗A)oτ⊗trivial
∼= A⊗K

by Takai duality again, so the connecting map in K-theory becomes a natural
map φ∗α satisfying the correct axioms. �

Now we’re ready to apply this to the foliation index theorem. Suppose
the foliation F results from a locally free action of a simply connected even-
dimensional solvable Lie group G on the compact manifold M . Then

C∗(M,F) ∼= C(M) oG,

and iterated applications of Theorem 4.2.6 set up an isomorphism

K0(C
∗(M,F)) ∼= K0(M × Rdim G) ∼= K0(M),

the last isomorphism given by Bott periodicity. Under these isomorphisms, one
can check that the index class of the leafwise Dirac operator goes first to the
exterior product of the class of the trivial line bundle on M with the Bott class
in K0(Rdim G), and thus under Bott periodicity to the class of the trivial vector
bundle on M .

Example 4.2.7 Let G, π, and M be as in Example 4.2.5, and consider the
2-dimensional subgroup H of G, the image in G of

{(
a b
0 a−1

)
: a, b ∈ R, a > 0

}
⊂ SL(2,R).

Then H acts freely on G (say on the left) and hence locally freely on V = G/π,
the unit sphere bundle of M . So we have a foliation of V by orbits of H. This
foliation does not have an invariant transverse measure, since such a measure
would correspond to a π-invariant measure of H\G ∼= S1, which does not exist.
However, the discussion above computes the index of the leafwise Dirac operator
on (V,F) and shows it is non-zero.

4.3 C∗-Algebras and Z/k-Index Theory

Definition 4.3.1 A Z/k-manifold is a smooth compact manifold with bound-
ary, Mn, along with an identification of ∂M with a disjoint union of k copies of a
fixed manifold βMn−1. It is oriented if M is oriented, the boundary components
have the induced orientation, and the identifications are orientation-preserving.
See Figure 4.2 for an illustration.
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identical boundary components

Figure 4.2: A Z/3-manifold

One should really think of a Z/k-manifold M as the singular space MΣ = M/∼
obtained by identifying all k of the boundary components with one another.
This space is not a manifold (if k > 2), and does not satisfy Poincaré duality.
The neighborhood of a point on βM is a cone on k copies of Bn−1 joined along
Sn−2, as illustrated in Figure 4.3. If M is an oriented Z/2-manifold, then MΣ

Figure 4.3: Link of a boundary point in MΣ (n = 2, k = 3)

is a manifold, but is not orientable, because of the way the two copies of βM
have been glued together. (For instance, if M is a cylinder, so βM = S1, then
MΣ is a Klein bottle.) So an oriented Z/k-manifold of dimension 4n does not
have a signature in the usual sense. But it does have a signature mod k, just as
a non-orientable manifold has a signature for Z/2-cohomology. (Since +1 = −1
in Z/2, the mod 2 “signature” of a non-orientable manifold is simply the middle
Betti number.) The signature of a Z/k-manifold was defined by Sullivan [92],
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who showed that MΣ has a fundamental class in homology mod k, and there is
a Z/k-version of Hirzebruch’s formula,

signM = 〈L(M), [M ]〉 ∈ Z/k.

This formula is a special case of an index theorem for elliptic operators on Z/k-
manifolds, due originally to Freed and Melrose [31], [32]. Other proofs were later
given by Higson [38], Kaminker-Wojciechowski [45], and Zhang [97]. Higson’s
proof in particular made use of noncommutative C∗-algebras. The approach we
will present here is due to the author [78]. For simplicity we’ll deal with the
“ordinary” (K0) index of a complex elliptic operator D.

Definition 4.3.2 A Z/k-elliptic operator on a Z/k-manifold Mn, ∂M ∼= βM×
Z/k, will mean an elliptic operator on M (in the usual sense) whose restriction
to a collar neighborhood of the boundary (diffeomorphic to βM × [0, ε) × Z/k)
is the restriction of an R×Z/k-invariant operator on βM×R×Z/k. Thus, near
the boundary, the operator is entirely determined by what happens on βM .

We want to define a Z/k-valued index for such an operator by using the
philosophy of noncommutative geometry, that says we should use a noncom-
mutative C∗-algebra to encode the equivalence relation on M (that identifies
the k copies of βM with one another), instead of working on the singular
quotient space MΣ. We begin by following a trick introduced in [38] to get
rid of the complications involved with analysis near the boundary. First we
attach cylinders to the boundary, replacing M by the noncompact manifold
N = M ∪∂M ∂M × [0,∞), as shown in Figure 4.4. It’s important to note that
an operator as in Definition 4.3.2 has a canonical extension to N , because of
the translation invariance in the direction normal to the boundary.

Now we introduce the C∗-algebra C∗(M ; Z/k) of the equivalence relation on
N that is trivial on M itself and that identifies the k cylinders with one another.
A simple calculation shows that

C∗(M ; Z/k) ∼= {(f, g) : f ∈ C(M), g ∈ C0(βM × [0,∞),Mk),

g|βM×{0} diagonal, f |∂M matching g|βM×{0}}.

Furthermore, just as an elliptic operator on an ordinary manifold defines a class
in K-homology, a Z/k-elliptic operator D on M , as extended canonically to
N , defines a class in K0(C∗(M ; Z/k)). (This group should be viewed as the
Z/k-manifold K-homology of M .)

Similarly we define a C∗-algebra C∗(pt; Z/k) which is almost the same, ex-
cept that M and βM are both replaced by a point. In other words,

C∗(pt; Z/k) = {f ∈ C0([0,∞),Mk) : f(0) a multiple of Ik}.

This is simply the mapping cone of the inclusion of the scalars into Mk(C) as
multiples of the k × k identity matrix, for which the induced map on K-theory
is multiplication by k on Z, so K0(C∗(pt; Z/k)) ∼= Z/k.



4.3. C∗-Algebras and Z/k-Index Theory 43

identical tubes

Figure 4.4: A Z/3-manifold with infinite cylinders attached

Now the collapse map c : (M,βM) → (pt,pt) induces a map on C∗-algebras
in the other direction, C∗(pt; Z/k) ↪→ C∗(M ; Z/k), and hence a map of K-
homology groups

c∗ : K0(C∗(M ; Z/k)) → K0(C∗(pt; Z/k)) ∼= Z/k.

The image of [D] under this map is called the analytic Z/k-index of D.

Definition 4.3.3 (the topological Z/k-index) Let [σ(D)] ∈ K∗(T ∗M), the
K-theory with compact supports of the cotangent bundle of M , be the class
of the principal symbol of the operator. Note that [σ(D)] is invariant under
the identifications on the boundary, i.e., it comes by pullback from the quotient
space T ∗MΣ (the image of T ∗M with the k copies of T ∗M |βM collapsed to one)
under the collapse map M � MΣ. Following [31] we define the topological Z/k-
index IndtD of D as follows. Start by choosing an embedding ι : (M,∂M) ↪→
(D2r, S2r−1) of M into a ball of sufficiently large even dimension 2r, for which
∂M embeds Z/k-equivariantly into the boundary (if we identify S2r−1 with the
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unit sphere in Cr, Z/k acting as usual by multiplication by roots of unity). We
take the push-forward map on complex K-theory

ι! : K
0(T ∗M) → K̃0(T ∗D2r) ∼= K̃0(D2r)

and observe that ι!([σ(D)]) descends to K̃0(M2r
k ) ∼= K0(pt; Z/k) ∼= Z/k, M2r

k

the Moore space obtained by dividing out by the Z/k-action on the boundary
of D2r, and call the image the topological index of D, Indt(D).

Theorem 4.3.4 (Z/k-index theorem) Let (M,φ : ∂M
∼=
→ βM × Z/k) be a

closed Z/k-manifold, and let D be an elliptic operator on M in the sense of
Definition 4.3.2. Then the analytic index of D in Ki(pt; Z/k) coincides with
the topological index Indt(D).

Sketch of Proof. The idea, based on the Kasparov-theoretic proof of the
Atiyah-Singer Theorem ([5], Chapter IX, §24.5), is to write the class of D in
K0(C∗(M ; Z/k)) as a Kasparov product:

[D] = [σ(D)]⊗̂C0(T∗MΣ)α̂ ∈ K0(C∗(M ; Z/k)),

where
α̂ ∈ KK

(
C0(T

∗MΣ) ⊗ C∗(M ; Z/k), C
)

is a canonical class constructed using the almost complex structure on T ∗M
and the Thom isomorphism, and we view [σ(D)] as living in K0(T ∗MΣ).

But now by associativity of the Kasparov product, we compute that

Ind(D) = [c∗]⊗̂C∗(M ;Z/k)[D] = [σ(D)]⊗̂C0(T∗MΣ)

(
[c∗]⊗̂C∗(M ;Z/k)α̂

)
.

So we just need to identify the right-hand side of this equation with Indt(D).
However, by Definition 4.3.3 Indt(D) = ι̂!([σ(D)]), where

ι̂! : K
0(T ∗MΣ) → K0(T ∗D2r

Σ ) ∼= K0(M2r
k )

is the push-forward map on K-theory. And examination of the definition of ι̂!
shows it is precisely the Kasparov product with

[c∗]⊗̂C∗(M ;Z/k)α̂,

followed by a “Poincaré duality” isomorphism K0(C∗(pt; Z/k))
∼=
→ K0(pt; Z/k).

�

4.4 Roe C∗-Algebras and Coarse Geometry

Finally, we mention an application of C∗-algebras to the topology “at infinity”
of noncompact spaces. Recall that we began Chapter 1 by talking about the
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differences between spectral theory of the Laplacian on compact and on non-
compact manifolds. The same points would have been equally valid for arbitrary
elliptic operators.

Roe had the idea of introducing certain C∗-algebras attached to a noncom-
pact manifold, but depending on a choice of metric, that can be used for doing
index theory “at infinity.”

Definition 4.4.1 ([72], [73]) Let M be a complete Riemannian manifold (usu-
ally noncompact). Fix a suitable Hilbert space H (for example, L2(M,d vol)) on
which C0(M) acts non-degenerately, with no nonzero element of C0(M) acting
by a compact operator. A bounded operator T on H is called locally compact if
ϕT, Tϕ ∈ K(H) for ϕ ∈ Cc(M), of finite propagation if for some R > 0 (depend-
ing on T ), ϕTψ = 0 for ϕ,ψ ∈ Cc(M), dist(suppϕ, suppψ) > R. Let C∗

Roe(M)
be the C∗-algebra generated by the locally compact, finite propagation, opera-
tors. One can show that this algebra is (up to isomorphism) independent of the
choice of H.

Example 4.4.2 If M is compact, the finite propagation condition is always
trivially satisfied, and C∗

Roe(M) = K, the compact operators. If M = Rn with
the usual Euclidean metric, then Ki(C

∗
Roe(M)) ∼= Z for i ≡ n mod 2, and

Ki(C
∗
Roe(M)) = 0 for i ≡ n− 1 mod 2. (See [73], p. 33 and p. 74.)

Definition 4.4.3 Let X and Y be proper metric spaces, that is, metric spaces
in which closed bounded sets are compact. Then a map f : X → Y is called a
coarse map if it is proper (the inverse image of a pre-compact set is pre-compact)
and if it is uniformly expansive, i.e., for each R > 0, there exists S > 0 such
that if dX(x, x′) ≤ R, then dY (f(x), f(x′)) ≤ S. Note that this definition only
involves the large-scale behavior of f ; f need not be continuous, and we can
always modify f any way we like on a compact set (as long as the image of
that compact set remains bounded) without affecting this property. A coarse
equivalence is a coarse map f : X → Y such that there exists a coarse map
g : Y → X and there is a constant K > 0 with dX(x, g ◦ f(x)) ≤ K and with
dY (y, f ◦ g(y)) ≤ K for all x ∈ X and y ∈ Y .

Example 4.4.4 The inclusion map Z ↪→ R (when Z and R are equipped with
their standard metrics) is a coarse equivalence, with coarse inverse the “rounding
down” map x 7→ bxc. More generally, if M is a connected compact manifold

with fundamental group π, and if M̃ is the universal cover of M , then M̃ is
coarsely equivalent to |π|, the group π viewed as a metric space with respect to
a word-length metric (defined by a choice of a finite generating set). The coarse

equivalence is again obtained by fixing a basepoint x0 ∈ M̃ and a fundamental
domain F for the action of π on M̃ , and defining f : |π| → M̃ by g 7→ g · x0,

g : M̃ → |π| by x 7→ g whenever x ∈ g · F . (The previous example is the special

case where M = S1, M̃ = R, π = Z, x0 = 0, and F = [0, 1).)

Proposition 4.4.5 (Roe [73], Lemma 3.5) A coarse equivalence X → Y in-
duces an isomorphism C∗

Roe(X) → C∗
Roe(Y ).
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Theorem 4.4.6 (Roe) If M is a complete Riemannian manifold, there is a
functorial “assembly map” A : K∗(M) → K∗(C

∗
Roe(M)). If D is a geometric

elliptic operator on M (say the Dirac operator or the signature operator), it
has a class in K0(M), and A([D]) is its “coarse index.” For noncompact spin
manifolds, vanishing of A([D]) (for the Dirac operator) is a necessary condition
for there being a metric of uniformly positive scalar curvature in the quasi-
isometry class of the original metric on M .

There is a Coarse Baum-Connes Conjecture analogous to the usual Baum-
Connes Conjecture, that the assembly map A : K∗(M) → K∗(C

∗
Roe(M)) is an

isomorphism for M uniformly contractible. (The uniform contractibility assures
that M has no “local topology;” without this, we certainly wouldn’t expect an
isomorphism, since K∗(C

∗
Roe(M)) only depends on the coarse equivalence class

of M .)
Unfortunately, the Coarse Baum-Connes Conjecture is now known to fail in

some cases. For one thing, it is known to fair for some uniformly contractible
manifolds without bounded geometry [20]. That suggests that perhaps one
should change the domain of the assembly map from K∗(M) to its “coarsifica-
tion” KX∗(M) ([73], pp. 14-15), the inductive limit of the K∗(|U|), the nerves
of coverings U of X by pre-compact open sets, as the coverings become coarser
and coarser. As one would hope, it turns out that A : K∗(M) → K∗(C

∗
Roe(M))

factors through KX∗(M), and that K∗(M) → KX∗(M) is an isomorphism
when M is uniformly contractible and of bounded geometry. However, there is
also an example of a manifold M of bounded geometry for which KX∗(M) →
K∗(C

∗
Roe(M)) is not an isomorphism [95]. But it is still conceivable (though it

seems increasingly unlikely) that the Coarse Baum-Connes Conjecture holds for
all uniformly contractible manifolds with bounded geometry, or at least for all
universal covers of compact manifolds.

The main interest of the Coarse Baum-Connes Conjecture, aside from its
aesthetic appeal as a parallel to the usual Baum-Connes Conjecture, is its con-
nection with the usual Novikov Conjecture (Conjecture 3.3.1). One has:

Theorem 4.4.7 (Principle of descent) The Coarse Baum-Connes Conjec-
ture for C∗

Roe(|π|), π a group, but viewed as a discrete metric space, implies the
Novikov Conjecture for π.

A sketch of proof can be found in [73], Chapter 8. Theorem 4.4.7 has been
applied in [96] to prove the Novikov Conjecture for any group π for which |π|
admits a uniform embedding into a Hilbert space. This covers both amenable
groups and hyperbolic groups.

4.5 Exercises

Exercise 4.5.1 Consider the teardrop X shown in Figure 4.1, obtained by
gluing together D2/µn and D2. (Here D2 is the closed unit disk in C, and µn is
the cyclic group of n-th roots of unity, that acts on D2 by rotations.) Compute
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the topology of the (oriented) orthonormal frame bundle P of X, which should
be a closed 3-manifold, and describe the locally free action of S1 ∼= SO(2) on P
with P/S1 ∼= X. Show that C∗

orb(X) is Morita equivalent to

A = {f ∈ C(S2,Mn(C)) : f(x0) is diagonal},

where x0 is a distinguished point on S2, which fits into a short exact sequence

0 → C0(R
2,Mn(C)) → A→ Cn → 0.

Deduce that K0(C
∗
orb(X)) is free abelian of rank n+1, and that K1(C

∗
orb(X)) =

0. From this is follows by duality that K0(C∗
orb(X)) is free abelian of rank

n+1. Compute the class in K0(C∗
orb(X)) = Korb

0 (X) of the Euler characteristic
operator D, and also its index IndD in K0(pt) = Z.

Exercise 4.5.2 Suppose a foliation F results from a locally free action of a
simply connected even-dimensional solvable Lie group G on a compact manifold
M . Show that the index of the leafwise Euler characteristic operator is 0 in
C∗(M,F), both by an application of Corollary 4.2.4 and by a calculation using
the Thom Isomorphism Theorem (Theorem 4.2.6), as was done above with the
Dirac operator.

Exercise 4.5.3 Let M be a compact oriented surface of genus g and with k > 1
boundary components (all necessarily circles), as in Figure 4.2, which shows the
case g = 1 and k = 3. Regard M as a Z/k-manifold. Compute the Z/k-index
of the Euler characteristic operator on M .

Exercise 4.5.4 Construct complete Riemannian metrics g on R2 for which
K∗(C

∗
orb(X)), X = (R2, g) is not isomorphic to K∗(pt), and give an example

of an application to index theory on X. (Hint: The Coarse Baum-Connes
Conjecture is valid for the open cone on a compact metrizable space Y . If Y is
embedded in the unit sphere Sn−1 in Rn, the open cone on Y is by definition the
union of the rays in Rn starting at the origin and passing through Y , equipped
with the restriction of the Euclidean metric on Rn.)
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