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1. Introduction

The simplest example of a “manifold with singularities” in the sense of
Sullivan ([26], cf. also [18]) and Baas [3] is a Z/k-manifold, a manifold
with boundary whose boundary consists of k identical components, all
identified with one another. These were originally introduced for the
purpose of giving a geometric meaning to bordism with Z/k coefficients,
or to index invariants with values in Z/k, such as the “signature mod
k” (see [18]). Later, Freed [8] and Freed-Melrose [9] were able to give an
analytic version of a index theorem for such manifolds, and other (or, as
some might claim, better) proofs were given by Higson [11], Kaminker-
Wojciechowski [14], and Zhang [27]. The innovation in Higson’s proof
was the use of noncommutative C∗-algebras to model the operator-
theoretic part of the index calculation.

However, the “philosophy of noncommutative geometry” would sug-
gest still another approach. Namely, a Z/k structure on a manifold
should be modeled by a noncommutative C∗-algebra, and then one
should work with this C∗-algebra just as one would work with the
usual algebra of functions on a manifold in proving the index theorem.
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2 Jonathan Rosenberg

The purpose of this paper is to implement such an approach, using
the concept of a groupoid C∗-algebra as introduced by Renault ([20],
or one can also find a nice exposition in [19]). This has several ancil-
lary benefits. First of all, it treats the Z/k index just as one treats
other kinds of indices in Kasparov-style index theory, following the
outline that one can find in [21]. Secondly, it suggests a program for
extending everything to manifolds with other kinds of singularities, of
which a good general exposition can be found in [5]. This has potential
geometric applications as explained for example in [6].

This paper arose out of lectures I prepared for the Summer Research
Conference on Noncommutative Geometry at Mount Holyoke College
in June, 2000. It’s a pleasure to thank the organizers of that meeting,
Alain Connes, Nigel Higson, and John Roe, as well as the sponsor
of the lectures, the Clay Mathematics Institute, for their help and
support. Some of the results were also presented at the Workshop on
Noncommutative Geometry and Quantization at MSRI in April, 2001.
I would also like to thank the referee for a number of useful suggestions.

2. The C∗-algebra of a Z/k-Manifold

DEFINITION 2.1. Let Σ = (P ), where P is a closed (smooth) mani-
folds (not necessarily connected). Then a (closed) Σ-manifold, or mani-
fold with singularities Σ, means a compact manifold M with boundary,

together with a diffeomorphism ∂M
∼=−→ βM × P , for some closed

manifold βM . In case M and P are oriented or have a spin structure,
this diffeomorphism is required to respect the additional structure.
Perhaps the most interesting special case is the one where P is 0-
dimensional, i.e., is the disjoint union of k points. In this case, we call
M a Z/k-manifold. This case is illustrated in Figure 2.1, with k = 3.

The situation we’ve been discussing can be generalized to the case
where Σ = (P1, · · · , Pr) consists of more than one kind of singularity.
For more details, see [3], [5], or [6].

Note that while M itself is smooth, there is a singular space MΣ

associated to it, obtained by collapsing ∂M to βM by collapsing each
{x} × P , x ∈ βM , to a point. Note the map M ³ MΣ is injective on
the interior of M .

Roughly speaking, the C∗-algebra, C∗(M ; Σ), of a manifold M with
singularities Σ should be the algebra of functions on the singular quo-
tient space MΣ. However, this is too coarse an invariant, as it doesn’t
take all the extra structure into account. Instead, since MΣ is the
quotient of M by an equivalence relation ∼ encoding the Σ-structure
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identical boundary components

Figure 2.1. A Z/3-manifold

on M , we want to use something like the C∗-algebra of the equivalence
relation. Here we are following the philosophy of noncommutative ge-
ometry as expounded in [7]: points in the same equivalence class should
“talk to each other” but not be collapsed to one. However, this is still
not exactly right, for a number of reasons:

1. Later we will want to do analysis without having to worry about
the boundary. For this reason (following a trick in [11]) we add
half-infinite cylinders onto the boundary first, as in Figure 2.2.

2. We need to construct the C∗-algebra so that it has the “right” K-
theory. For instance, in the case of a Z/k-manifold, K∗(C

∗(M ; Σ))
should be related to K-theory of M with Z/k coefficients.

3. We want to construct C∗(M ; Σ) as the C∗-algebra of a suitable
locally compact groupoid, in the sense of [20]. Such a groupoid is not
so hard to construct in the case of a Z/k-manifold (see Definition
2.2), but in the case of general singularities, it is not clear how to
proceed.

DEFINITION 2.2. Let k ≥ 2 and let M be a compact Z/k-manifold,
that is a manifold with singularities Σ = (Z/k) in the sense of Definition
2.1. Recall that this means that, as part of the given structure onM , we
have a diffeomorphism φ : ∂M → βM ×Z/k, for some closed manifold
βM . Let N = M ∪∂M ∂M × [0,∞), where ∂M ⊂ M is identified to
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identical tubes

Figure 2.2. A Z/3-manifold with cylinders added

∂M ×{0}. This is a manifold without boundary, usually non-compact.
Note that N is homeomorphic to the interior of M , i.e., to M r ∂M ,
via the collaring theorem. We define an equivalence relation ∼ on N
as follows. Points in M (including points in ∂M) are equivalent only
to themselves. A point (x, t) ∈ ∂M × (0,∞) is equivalent to a point
(y, s) ∈ ∂M × (0,∞) if and only of t = s and p(x) = p(y), where
p : ∂M → βM is φ : ∂M → βM ×Z/k followed by projection onto the
first factor.

Let G ⊂ N ×N be the equivalence relation ∼ viewed as a groupoid.
We observe that G is locally closed in N×N . Indeed, the closure G of G
in N ×N is easily seen to consist of G∪G′, where G′ is the equivalence
relation on ∂M identifying points which project to the same point in
βM . So

GrG ∼= {(x, i, j) | x ∈ βM, 1 ≤ i, j ≤ k, i 6= j}

∼= βM × ((k2 − k) points)

is compact and thus G is open in G, so that G is locally compact in the
relative topology from N ×N . (Note that this argument would break
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C∗-algebras & index theory on singular manifolds 5

down in the case where Σ = (P ), dimP > 0.) The unit space of the
groupoid G is of course N , and the range map r : G → N is a local
homeomorphism, since this is obvious over the interior of M and over
∂M×(0,∞), whereas the only points in G over ∂M×{0} are of the form
(x, x), x ∈ ∂M , whose small neighborhoods in G have projection under
r that miss all but one of the cylinders βM × {j} × [0,∞). Hence by
[20, Proposition I.2.8], G has a Haar system which is essentially unique,
and the C∗-algebra C∗(G) is well-defined. We denote it by C∗(M ;Z/k).
Note, incidentally, that in the construction of C∗(M ;Z/k), one can use
either real or complex scalars. When it is necessary to distinguish the
real and complex C∗-algebras, we will denote the former by C∗R(M ;Z/k)
for emphasis.

For future use, we also define two additional C∗-algebras. We let
C∗(Z/k;Z/k) denote the C∗-algebra of the locally compact principal
groupoid G1 with unit space (Z/k)× [0,∞) defined by the equivalence
relation ∼ with (x, t) ∼ (y, s) if and only if t = s and either x = y or
else t = s > 0. This is well defined for the same reason as C∗(M ;Z/k),
and again we can use either real or complex scalars. Finally, we let
C∗(pt;Z/k) denote the C∗-algebra of the locally compact principal
groupoid G2, the quotient of G1 obtained by collapsing (Z/k) × {0}
to a single point.

PROPOSITION 2.3. Let k ≥ 2 and let M be a compact Z/k-manifold.
Then C∗(M ;Z/k) fits into a short exact sequence of C∗-algebras

0→ C0(R)⊗ C(βM)⊗Mk → C∗(M ;Z/k)→ C(M)→ 0. (2.1)

This is valid with either real or complex scalars.

Similarly we have exact sequences

0→ C0(R)⊗Mk → C∗(Z/k;Z/k)→ C(pt)k → 0. (2.2)

and

0→ C0(R)⊗Mk → C∗(pt;Z/k)→ C(pt)→ 0. (2.3)
Proof. Note thatM is closed in N and on N the equivalence relation

∼ of Definition 2.2 is trivial. So we obtain (see [20, Proposition II.4.5])
a quotient C∗-algebra of C∗(M ;Z/k) isomorphic to C(M), and the
kernel of the quotient map C∗(M ;Z/k)→ C(M) must be attached to
the complementary open set, ∂M × (0,∞). Since the inverse image of
this set in G splits as a product βM × (0,∞)× (Z/k)× (Z/k), and the
C∗-algebra of the groupoid (Z/k) × (Z/k) is just Mk, the first result
follows. The cases of C∗(Z/k;Z/k) and C∗(pt;Z/k) are handled exactly
the same way. ¤
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PROPOSITION 2.4. Let k ≥ 2 and let M be a connected compact

Z/k-manifold. Then the connecting map in the long exact K-theory
sequence associated to the extension (2.1) may be identified with the
map ι∗ : K∗(M) → K∗(βM), followed by multiplication by k. Here
ι : βM → M denotes the inclusion. If complex scalars are used, K∗

means KU∗, and if real scalars are used, K∗ means KO∗.
Proof. The connecting map of (2.1) in K-theory is

Ki(C(M)) ∼= K−i(M)→

Ki−1
(
C0(R)⊗ C(βM)⊗Mk

) ∼= Ki−1
(
C0(R)⊗ C(βM)

)

∼= K−i+1(R× βM) ∼= K−i(βM). (2.4)

Now let C∗(∂M ;Z/k) be defined like C∗(M ;Z/k), in the sense that we
use an equivalence relation on ∂M× [0,∞) which is trivial on ∂M×{0}
and identifies points in ∂M × (0,∞) having the same image in βM ×
(0,∞). Then in analogy with extension (2.1) we have an extension

0→ C0(R)⊗ C(βM)⊗Mk → C∗(∂M ;Z/k)→ C(∂M)→ 0 (2.5)

in which C(βM) splits off as a tensor factor. In other words, C∗(∂M ;
Z/k) ∼= C(βM) ⊗ C∗(Z/k;Z/k). Now because of the commutative
diagram

0 // C0(R)⊗ C(βM)⊗Mk
// C∗(M ;Z/k) //

²²²²

C(M) //

²²²²

0

0 // C0(R)⊗ C(βM)⊗Mk
// C∗(∂M ;Z/k) // C(∂M) // 0

the map of (2.4) factors through the restriction map K−i(M) →
K−i(∂M), followed by connecting map for (2.5), which in turn is the
external product of the identity map on K−i(βM) with the connecting
map for (2.2). But K∗(∂M) ∼= K∗(βM)k, and the map K∗(M) →
K∗(∂M) is just ι∗ : K∗(M) → K∗(βM), followed by the diagonal
inclusion of K∗(βM) into a product of k copies of itself. So we can
rewrite the map of (2.4) as the composite of ι∗ : K∗(M) → K∗(βM)
with the external product of the identity map on K∗(βM) with the
connecting map for (2.3), the result of collapsing the k copies of the
scalars in (2.2) to one.

We also only need to compute the connecting map in K0. (That’s
because the connecting map for (2.3) is easily seen to be a map of
K∗(pt)-modules from K∗(pt) to itself, and so it’s determined by what
happens to the generator in degree 0.) Now one computes that

C∗(pt;Z/k) = {f ∈ C0([0,∞),Mk) | f(0) a multiple of Ik}.
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This is simply the mapping cone of the inclusion of the scalars into
Mk as multiples of the k× k identity matrix, so the connecting map is
multiplication by k, as required. ¤

REMARK 2.5. In fact Propositions 2.3 and 2.4 are also valid when
k = 1, but in this case, ∂M = βM and C∗(M ;Z/k) is simply C0(N).
Since N is properly homotopy equivalent to the interior of M , its K-
theory is just the relative K-theory of the pair (M,∂M), and so all
statements are obvious in this case.

COROLLARY 2.6. The K-theory of the C∗-algebra C∗(pt;Z/k) de-
fined in (2.3) is just Ki(C

∗(pt;Z/k)) ∼= K−i−1(pt;Z/k). The dual
theory (often known as “K-homology,” though it is a cohomology theory
on C∗-algebras) is given by K−i(C∗(pt;Z/k)) ∼= Ki(pt;Z/k).
Proof. This is obvious from Proposition 2.4, the long exact sequences,

and the universal coefficient theorem. ¤

REMARK 2.7. One might note that the algebra C∗(pt;Z/k) is in some
sense (cf. [23]) dual to the algebra Dk(H) defined in [11]. That algebra
(say in the complex case) has K0-group ∼= Z/k and vanishing K1; our
C∗(pt;Z/k) has K0-group ∼= Z/k and vanishing K1.

3. The C∗-algebra of an η-Manifold

As mentioned above, we are not sure how to give a good definition
of C∗(M ; Σ) in the case of general singularities. However, there is one
interesting case in which we can give an ad hoc definition, the case of
an η-manifold.

DEFINITION 3.1. An η-manifold (cf. [6]) is a manifold with singular-
ities Σ = (η) in the sense of Definition 2.1, where η denotes S1 with
its non-bounding spin structure. If we forget the spin structure, an η-
manifold is just a manifold M with singularities Σ = (S1), but later
we will require M to have a spin structure inducing a product spin
structure (βM, s) × η on its boundary. (Here s is a spin structure on

βM .) As is well known, η generates ΩSpin
1

∼= Z/2, and is the image of
the generator of πs

1
∼= Z/2 with the same name.

DEFINITION 3.2. Let Mn be an η-manifold in the sense of Definition
3.1. Thus M is a compact manifold with boundary, together with a
diffeomorphism φ : ∂M → βM × S1 (and some spin structure data).
Let N = M∪∂M ∂M×[0,∞), where ∂M ⊂M is identified to ∂M×{0}.
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This is a manifold without boundary, usually non-compact. Let N ′ be
the quotient space of N (locally compact, but not a manifold) obtained
by collapsing ∂M ⊂M to βM via the projection map βM×S1 → βM .
Note that the algebra CR

0 (N
′) can be identified with the subalgebra

of functions f ∈ CR
0 (N) which are constant along {x} × S1 for each

x ∈ βM . Identify S1 with the unit circle in the complex plane and let
the group S1 act on N ′ as follows: the action is trivial on the interior
of M and on the image of ∂M , and S1 acts on

∂M × (0,∞) ∼= βM × S1 × (0,∞)

by the formula z · (x,w, t) = (x, zw, t), x ∈ βM , z, w ∈ S1, t > 0.
Alternatively, the image of ∂M × [0,∞) in N ′ can be identified with
βM × C, with a product action where S1 acts trivially on βM and
on C by multiplication. (Here βM × {0} corresponds to the image of
∂M × {0}, and βM × {z ∈ C | |z| = t} is identified with ∂M × {t}
when t > 0.) The fixed point set for the S1-action on N ′ is the singular
space MΣ (M with ∂M ∼= βM × S1 collapsed to βM).

Let C∗R(M ; η) and C∗(M ; η) be the real and complex transformation
C∗-algebras CR

0 (N
′) o S1 and C0(N

′) o S1. Also let C∗R(pt; η) denote
CR
0 (C) o S1, and similarly with C∗(pt; η). We have a canonical S1-

equivariant proper “collapse” map c : N ′ → C sending M to 0 and
projecting

βM × {z ∈ C | |z| = t} → {z ∈ C | |z| = t}

for t > 0, so this induces a dual map of C∗-algebras C∗R(pt; η) →
C∗R(M ; η), and similarly in the complex case.

PROPOSITION 3.3. The S1-equivariant real K-theory of C with com-
pact supports (for the action of S1 by multiplication) may be identified
with the K-theory of C∗R(pt; η), and is given by

KOi(C
∗
R(pt; η))

∼= KO−i
S1(C) ∼= KO−i−2

S1 (pt)

for all i (though one has periodicity mod 8). These groups are computed
in [2]. The (Kasparov) dual theory is given by

KOS1

i (C) ∼= KOS1

i−2(pt)

for all i (again with periodicity mod 8). Similarly, KS1
i (C) ∼= R(S1) =

Z[t, t−1] for i even, 0 for i odd.
Proof. The identification of equivariant K-theory (for a compact

group action) with K-theory of the crossed product may be found in
[13]. The proof is only stated for the complex case, but everything goes

singkl.tex; 1/08/2002; 16:24; p.8



C∗-algebras & index theory on singular manifolds 9

over the real case as well. The rest of this is equivariant Bott periodicity,
for which one can see [24] for the case of K-cohomology, and [15], §5,
for the case of Kasparov K-homology. ¤

REMARK 3.4. The reader might wonder what would happen if we
used the analogue of the definition of C∗(M ; η) in the case of a Z/k-
manifold. In other words, if M is a Z/k-manifold and N = M ∪∂M

∂M × [0,∞), we can form N ′, the result of collapsing ∂M × {0} ∼=
βM × Z/k × {0} ⊂ N to βM × {0}. Note that N ′ contains MΣ as
a closed subset, and N ′ r MΣ

∼= βM × Z/k × (0,∞). Also Z/k acts
on N ′ semi-freely, the action being free on βM × Z/k × (0,∞) with
quotient space βM × (0,∞), and trivial on MΣ. Thus we obtain an
exact sequence

0→ C0(R)⊗ C(βM)⊗Mk → C(N ′) o Z/k → C(MΣ)
k → 0.

Thus the result of this construction would be quite similar to C∗(M ;Z/k)
as defined in Definition 2.2. More precisely, there is a commuting dia-
gram with exact rows, built out of two pull-back squares:

0 // C0(R)⊗ C(βM)⊗Mk
// C∗(M ;Z/k) // C(M) // 0

0 // C0(R)⊗ C(βM)⊗Mk
// E //

²²

OO

C(MΣ) //
Ä _

∆
²²

?Â

OO

0

0 // C0(R)⊗ C(βM)⊗Mk
// C(N ′) o Z/k // C(MΣ)

k // 0,

(3.1)
with ∆: C(MΣ) ↪→ C(MΣ)

k the diagonal inclusion and C(MΣ) ↪→
C(M) induced by M ³MΣ.

4. Three index theorems

DEFINITION 4.1. Let M be a closed Σ-manifold, where Σ = (P ),
P = Z/k or η. Recall that M comes with a diffeomorphism φ : ∂M →
βM ×P . For purposes of this section, an elliptic operator D on M will
mean an elliptic pseudodifferential operator which on a small collar
neighborhood of the boundary, ∂M × [0, ε), is invariant under trans-
lation normal to the boundary (i.e., is the restriction of a R-invariant
elliptic operator on ∂M×R) and is also invariant under translation in P .
(Recall that in our case, P is a compact group, either Z/k or S1, and we
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can identify ∂M×[0, ε) with βM×P×[0, ε) via φ.) The (graded) vector
bundle on which such an operator acts must satisfy a similar invariance
condition. The primary examples of such operators are the standard
elliptic operators: the Euler characteristic operator of a Riemannian
manifold, the signature operator of an oriented Riemannian manifold,
the Dirac operator of a spin (or spinc) Riemannian manifold, and the
Dolbeault operator of a Kähler manifold. In all cases, the associated
Riemannian metric has to be a product metric (coming from a metric
on βM and from the standard metrics on P and R) in a neighborhood
of the boundary.

DEFINITION 4.2. (the analytic Z/k-index) Let (M,φ : ∂M
∼=→

βM ×Z/k) be a closed Z/k-manifold, and let D be an elliptic operator
on M in the sense of Definition 4.1. We assume D is acting on sections
of some vector bundle, equipped with a grading and suitable Clifford
module data so that D locally defines a class in Ki for some i, where
K∗ denotes either real or complex K-homology, as appropriate. The
main examples we have in mind are the following:

• M i is a spin manifold and (βM)i−1 has the induced spin struc-
ture. D is the C`i-linear real Dirac operator in the sense of [17],
Chapter II, §7, and Chapter III, §16. (C`i denotes the Clifford
algebra of Ri.) In this case D locally defines a class in KOi.

• M2n is a spinc manifold and (βM)2n−1 has the induced spinc

structure. D is the complex Dirac operator acting on the spinor
bundle with Z/2-grading defined by the half-spinor bundles. In
this case D locally defines a class in K0.

• M2n is an oriented even-dimensional manifold and D is the sig-
nature operator as in [17], Chapter II, §6, which locally defines a
class in K0.

• M2n is a complex manifold (of complex dimension n) with a
Kähler metric which near the boundary is compatible with the
Z/k-structure, and D is the Dolbeault operator. In this case D
locally defines a class in K0.

Since, in a neighborhood of the boundary, D is invariant under transla-
tions normal to the boundary of M , it naturally extends to an elliptic
operator on the manifold N of Definition 2.2. We claim that D defines
a class [D] ∈ K−i(C∗(M ;Z/k)) = KK(C∗(M ;Z/k), C`i). Indeed, this
is obvious from the fact that D defines a C0(N)-C`i Kasparov bimodule
which is equivariant for the groupoid G (in Definition 2.2), and thus
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gives a Kasparov bimodule for the groupoid C∗-algebra. Since a ho-
motopy of metrics gives rise to a homotopy of operators, the Kasparov
class [D] is independent of the choice of metric. Note that via the

open inclusions R × βM ↪→ C∗(M ;Z/k)̂ and intM ↪→ C∗(M ;Z/k)̂,
[D] restricts to the usual class defined by the relevant elliptic opera-
tor on the open manifold R × βM or intM . The analytic Z/k-index
inda(D) of D is defined to be the image of the class [D] under the map
c∗ : K

−i(C∗(M ;Z/k)) → K−i(C∗(pt;Z/k)) ∼= Ki(pt;Z/k). The map
c∗ is dual to the inclusion

c∗ : C∗(pt;Z/k) ↪→ C∗(M ;Z/k), (4.1)

or equivalently can be viewed as the map in “K-homology” induced by
the “collapse map” c of M to a point. The identification of K−i(C∗(pt;
Z/k)) comes from Corollary 2.6.

DEFINITION 4.3. (the topological Z/k-index) Let notation be as
in Definition 4.2 above. Let [σ(D)] ∈ K∗(T ∗M) or KR∗(T ∗M), the K-
theory with compact supports of the cotangent bundle of M , be the
class of the principal symbol of the operator. In the real case we need
to view T ∗M as a Real space, as explained in [1], or in [17, Chapter
III, §16]. Note that [σ(D)] is invariant under the identifications on the
boundary, i.e., it comes by pullback from the quotient space T ∗MΣ (the
image of T ∗M with the k copies of T ∗M |βM collapsed to one) under
the collapse map M ³ MΣ. Following [8] we define the topological
Z/k-index indtD of D as follows. Start by choosing an embedding
ι : (M,∂M) ↪→ (D2r, S2r−1) of M into a ball of sufficiently large even
dimension 2r (2r divisible by 8 in the real case), for which ∂M embeds
Z/k-equivariantly into the boundary (if we identify S2r−1 with the
unit sphere in Cr, Z/k acting as usual by multiplication by roots of
unity). First consider the complex case, with D anti-commuting with a
Z/2-grading so as to give a class in K0. Recall that if M were a closed
manifold, the usual topological index of D would be the image of [σ(D)]
under the push-forward map on complex K-theory

ι! : K
0(T ∗M)→ K0(T ∗(D2r, S2r−1)

) ∼= K0(D2r, S2r−1) ∼= Z,

or in other words the composite

K0(T ∗M)
Poincaré duality
−−−−−−−−−−→

∼=
K0(M)

ι∗−→ K0(D
2r, S2r−1) ∼= K0(D2r, S2r−1).

We simply want the analogue of this with the Z/k-structure taken into
account, or in other words, the result of a push-forward map

ι̂! : K
0(T ∗MΣ)→ K0(T ∗(D2r

Σ , S
2r−1
Σ )

) ∼= K̃0(M2r
k ) ∼= Z/k,
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where M2r
k is the Moore space obtained by dividing out by the Z/k-

action on the boundary of D2r. We call the image the topological index
of D, indt(D). The push-forward is defined by the “Thom map” fol-
lowed by extension by 0; in other words, we have the Thom isomorphism
K0(T ∗M)→ K0(T

∗ν), where ν is a tubular neighborhood of M in D2r,
and since this is equivariant for the Z/k-structure on the boundary, it
descends to a map

K0(T ∗MΣ)→ K0(T
∗νΣ)→ K0(T ∗(D2r

Σ , S
2r−1
Σ )

)
.

It is shown in [9] that this push-forward map is uniquely characterized
by natural analogues of the Atiyah-Singer axioms. The real case is
similar, except that we need to use the push-forward map on Real
K-theory instead, getting a topological index in KO∗(pt; Z/k).

THEOREM 4.4 (cf. [8], [9], [11], and [14]). Let (M,φ : ∂M
∼=→ βM ×

Z/k) be a closed Z/k-manifold, and let D be an elliptic operator on

M in the sense of Definition 4.1. Then the analytic index of D in

Ki(pt;Z/k), in the sense of Definition 4.2 coincides with the topological
index indtD of D in the sense of Definition 4.3. (This is valid in both
the real and complex cases.)
Proof. First consider the complex case. In the only interesting case,

M is even-dimension andD anti-commutes with a Z/2-grading, so as to
locally define a class in K0. Let N ∼= intM be as in Definition 2.2. By
the Kasparov-theoretic proof of the usual index theorem [4, Chapter IX,
§24.5], the class of D in K0(N) ∼= K0(intM) is the Kasparov product
[σ(D)]⊗̂C0(T ∗M)α, where

α ∈ KK
(
C0(T

∗M)⊗ C0(intM), C
)

is the canonical class coming from the Dolbeault complex ∂ of the
canonical almost complex structure on T ∗M , the Thom isomorphism,
and the projection map T ∗M → M . (In Blackadar’s book the proof
is given in the case where ∂M = ∅, but the case where M has a
boundary works the same way, once one notices that D and ∂ define
Kasparov bimodules for C0(intM), though not for C(M), since we have
not imposed any boundary conditions. See also [16, §8, Theorem 1] for
an explanation of how to deal with manifolds with boundary.) Now
one can observe that everything in sight is compatible with the Z/k-
structure, and so descends to the groupoid algebra. In other words,
with notation as in Definition 4.3, we have

[D] = [σ(D)]⊗̂C0(T ∗MΣ)α̂ ∈ K0(C∗(M ;Z/k)),

where now
α̂ ∈ KK

(
C0(T

∗MΣ)⊗ C∗(M ;Z/k), C
)

singkl.tex; 1/08/2002; 16:24; p.12



C∗-algebras & index theory on singular manifolds 13

is the groupoid-equivariant version of α, and we now view [σ(D)] as
living in K0(T ∗MΣ).

But now c∗ : K
0(C∗(M ;Z/k))→ K0(C∗(pt;Z/k))

∼=−→ K0(pt;Z/k)
can be viewed as Kasparov product with the homomorphism c∗ of equa-
tion (4.1). So by associativity of the Kasparov product, we compute
that

inda(D) = [c∗]⊗̂C∗(M ;Z/k)[D] = [σ(D)]⊗̂C0(T ∗MΣ)

(
[c∗]⊗̂C∗(M ;Z/k)α̂

)
.

So we just need to identify the right-hand side of this equation with
indt(D). However, by Definition 4.3, indt(D) = ι̂!([σ(D)]), where

ι̂! : K
0(T ∗MΣ)→ K0(T ∗D2r

Σ ) ∼= K̃0(M2r
k )

is the push-forward map on K-theory. And examination of the defini-
tion of ι̂! in terms of the Thom isomorphism shows it is precisely the
Kasparov product with

[c∗]⊗̂C∗(M ;Z/k)α̂,

followed by Kasparov product with a “Poincaré duality” element

δ ∈ KK(C(pt), C∗(pt;Z/k)⊗ C0(M
2r
k ))

implementing the isomorphism K0(C∗(pt;Z/k))
∼=−→ K0(pt;Z/k). The

proof in the real case follows exactly the same outline, except that
one has to use the Real structure of the cotangent bundle, i.e., replace
C0(T

∗M) by {f ∈ C0(T
∗M) | f(τ(x)) = f(x)}, where τ is the involution

on T ∗M that is multiplication by −1 on each fiber. ¤

DEFINITION 4.5. (the analytic η-index) Let (M,φ : ∂M
∼=→ βM×

η) be a closed η-manifold. We let i be the dimension of M and assume
M is equipped with a spin structure inducing a product spin structure
on ∂M i−1 ∼= βM i−2×S1, coming from some spin structure on βM and
the non-bounding spin structure on S1. We giveM a Riemannian struc-
ture compatible with its Σ-structure. For simplicity, we’ll first suppose
i = dimM is even and consider DE , the complex Dirac operator on M
with coefficients in some auxiliary bundle E (whose restriction to ∂M is
pulled back from βM). The operator DE is defined using a Hermitian
connection on E compatible with the η-manifold structure near ∂E.
Since DE is translation-invariant in a neighborhood of ∂M , it extends
to an operator on the open manifold N = M ∪∂M ∂M× [0,∞) ∼= intM .
Thus we have a Kasparov class [DE ] ∈ K0(N). (Since N is non-
compact, this is to be interpreted asKK(C0(N),C).) Let c : N → C be
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the “collapse” map collapsingM to 0 ∈ C and sending βM×S1×[0,∞)
first to S1 × [0,∞) (by collapsing the βM factor) and then to C by
means of “polar coordinates” ((eiθ, t) 7→ teiθ). We define the analytic
η-index inda(DE) of DE to be c∗([DE ]), or in other words the Kasparov
product of [DE ] ∈ KK(C0(N),C) with the class of the homomorphism

c∗ : C0(C) ↪→ C0(N).

It takes its values in K0(C) ∼= Z.
Next, we consider the case of the C`i-linear real Dirac operator with

coefficients in a real vector bundle E, whose restriction to ∂M again
comes from a bundle E1 over βM . If we use real instead of complex K-
theory, the same procedure as in the complex case gives a KO-valued
analytic index inda(DE) ∈ KOi(C) ∼= KOi−2(pt).

THEOREM 4.6 (η-manifold index theorem). Let (M,φ : ∂M
∼=→ βM×

η) be a closed spin (or spinc) η-manifold of even dimension, and let E
be a vector bundle on M whose restriction to ∂M is pulled back from a

bundle E1 on βM . Fix a Riemannian structure on M compatible with

its Σ-structure, and let DE be the Dirac operator onM with coefficients

in E, computed with respect to a Hermitian connection on E whose

restriction to a neighborhood of the boundary is pulled back from βM .

Then inda(DE) = ind
(
(DβM )E1

)
, the index (in complex K-theory)

of the Dirac operator on βM with coefficients in E1, which in turn is

computed by applying the usual Atiyah-Singer Theorem on βM .
Proof. Consider the following commutative diagram with exact rows:

0 // C(βM)⊗ C(S1)⊗ C0(R) // C0(N) // C(M) // 0

0 // C0(C r {0}) //
?Â

OO

C0(C) //
?Â

OO

C({0}) //
?Â

OO

0

This induces a diagram

K0(M) //

²²

K0(N) //

²²

K0(βM × S1 × R)

²²
K0(pt) // K0(C) // K0(C r {0})

with [DE ] ∈ K0(N) mapping by the upper right horizontal arrow to
the class of its restriction to the open subset βM × S1 × R. Now the
bottom row of this diagram is part of the exact sequence

K1(C) = 0→ K1(C r {0}) ∼= Z

→ K0(pt) = Z → K0(C) ∼= Z → K0(C r {0}) ∼= Z → K−1(pt) = 0.
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From this we see that the mapK0(C)→ K0(Cr{0}) is an isomorphism,
and K0(pt) → K0(C) is the 0-map. It follows that inda([DE ]) can be
identified with the image of the restriction of DE to βM×S1×R in the
group K0(C r {0}) ∼= Z. But by the assumptions on D, this restricted
operator splits as the external product

[
(DβM )E1

]
£ [DS1 ]£

[
DR

]
,

and maps simply to k£ [DS1 ]£
[
DR

]
in K0(Cr{0}) = K0(pt×S

1×R),

where k is the image of
[
(DβM )E1

]
in K0(pt). But this in turn is just

ind (DβM )E1 , while [DS1 ]£
[
DR

]
is the canonical generator of K0(S

1×

R). ¤

REMARK 4.7. This theorem is in many respects unsatisfactory, since
it ignores what happens on intM , and also since it fails to take advan-
tage of the free S1-action on ∂M . One seemingly obvious alternative
would be to work with the R-action on N which is trivial on M and
which is defined on βM × S1 × [0,∞) by the formula

t · (x, eiθ, s) = (x, ei(θ+ts), s).

This captures all the η-structure on M , but unfortunately it leads to
exactly the same index invariants as the ones we’ve already defined,
because of the fact that the forgetful map KKR → KK is an iso-
morphism ([16], §5, Theorem 2). Another possibility would be to use
the S1-action on N ′. (There is no continuous S1-action on N itself.)
Let G = S1 and R = R(G) = Z[t, t−1]. We still hope to define out
of DE a class in KKG(C0(N

′),C). However, existence of such a class
seems to be a delicate matter since there is no obvious reason why
the restriction of DN (initially defined on C∞ spinors on all of N) to
those spinors whose restriction to ∂M = βM × S1 is constant in the
S1-factor should be essentially self-adjoint. But if this were the case,
or if one could substitute some suitably modified operator, it should
define a G-equivariant Kasparov class on N ′. Then the analytic η-index
inda(DE) of DE would again be defined to be c∗([DE ]), or in other
words the Kasparov product of [DE ] ∈ KKG(C0(N

′),C) with the class
of the G-equivariant homomorphism

c∗ : C0(C) ↪→ C0(N
′).

It would take its values in KG
0 (C) ∼= R = Z[t, t−1]. (See Proposition

3.3.)
Note that if p denotes the augmentation ideal (t−1) of R = Z[t, t−1],

then by the Localization Theorem ([24]; see also [22], §3 for slight
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16 Jonathan Rosenberg

generalizations) KG
0 (N ′)p ∼= KG

0 (N ′G)p ∼= K0(MΣ)⊗Rp and K
G
0 (C)p ∼=

K0(CG)p ∼= K0(pt) ⊗ Rp, and c∗ localized at p really can be identified
with the result of the collapse map MΣ → pt. Thus, after localizing,
we would recover the original “naive” notion of index theory on a Σ-
manifold, where an elliptic operator gives a class in K0(MΣ) and the
index is obtained via the collapse map to a point.

THEOREM 4.8 (real η-manifold index theorem). Let (M,φ) be a
closed spin η-manifold of dimension i, and let E be a real vector bundle
on M whose restriction to ∂M is pulled back from a bundle E1 on βM .
Fix a Riemannian structure on M compatible with its Σ-structure, and
let DE be the Dirac operator on M with coefficients in E, computed
with respect to a connection on E whose restriction to a neighborhood
of the boundary is pulled back from βM . Then the real analytic index
of DE is given by

inda(DE) = ind
(
(DβM )E1

)
∈ KOi−2(pt)

the index of the real Dirac operator on βM with coefficients in E1,

which in turn is computed by applying the usual (real) Atiyah-Singer
Theorem (see [17], Chapter III, §16) on βM .
Proof. The proof is almost identical to that of Theorem 4.6. We only

indicate the differences:
1. The only case where the map KOi(pt) → KOi(C) ∼= KOi−2(pt)

could possibly be non-zero is when i ≡ 4 mod 8. In this case we have
the exact sequence

KO4(pt) ∼= Z → KO4(C) ∼= KO2(pt) ∼= Z/2

→ KO4(C r {0}) ∼= KO3(S
1)

∂
→ KO3(pt) = 0,

which again shows that the map KO4(pt)→ KO4(C) is zero. So in all
cases, KOi(C) injects into KOi(C r {0}) ∼= KOi−i(S

1) ∼= KOi−i(pt)⊕
KOi−2(pt), in fact as a direct summand.

2. In the real case, the distinction between the two spin structures
on S1 becomes relevant. Since we are using the non-bounding spin
structure, [DS1 ] ∈ K1(S

1) ∼= Z from the proof of Theorem 4.6 has to
be replaced by [Dη] ∈ KO1(S

1) ∼= Z⊕ Z/2. Note that [Dη] projects to
the generator of Z/2 inKO1(pt), while [DS1 ], the Dirac operator for the
bounding spin structure, projects to 0 in this factor. But the two Dirac
classes have the same projection in Z = K̃O1(S

1) ∼= KO0(pt), since
they differ by the action of H1(S1;Z/2) ∼= Z/2. Thus the distinction
between [DS1 ] and [Dη] turns out not to matter after all, as both [DS1 ]£[
DR

]
and [Dη]£

[
DR

]
project to the same thing in the image of KOi(C)

in KOi(C r {0}) ∼= KOi(S
1 × R). ¤
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5. Applications to positive scalar curvature

In this section we illustrate the use of the index theorems of Section
4 by reproving some of the results of [6] on positive scalar curvature.
First, a simple definition:

DEFINITION 5.1. Let (M,φ : ∂M → βM × P ) be a manifold with
singularities Σ = (P ), as in Definition 2.1. We assume P is equipped
with a standard scalar-flat metric. (In our cases, P will be S1 or Z/k, so
this will simply be the usual metric on P .) A metric of positive scalar
curvature on M means a Riemannian metric on M which in a collar
neighborhood of the boundary diffeomorphic to βM × P × [0, ε) is a
product metric of the form

(metric on βM) × (standard metric on P )
× (standard metric on [0, ε))

and which has positive scalar curvature everywhere. Note that since
P × [0, ε) is scalar-flat, existence of such a metric implies that βM
admits a metric of positive scalar curvature.

The following problem, first treated in [6], now arises:

QUESTION 5.2. Suppose βM admits a metric of positive scalar cur-
vature. Then does M admit a metric of positive scalar curvature in the
sense of Definition 5.1?

In this regard we have the following result:

THEOREM 5.3. Let Mn be a closed spin Z/k-manifold. Then if M
admits a metric of positive scalar curvature in the sense of Definition

5.1, the analytic index of the Dirac operator of M (in the sense of
Definition 4.2) must vanish in Kn(pt;Z/k) or KOn(pt;Z/k).
Proof. Assume M is a Z/k-manifold with a metric of positive scalar

curvature, and form the (complex or C`n-linear real) Dirac operator D
with respect to this particular choice of metric. Let N beM with a half-
infinite cylinder attached, as in Definition 2.2. Since N is complete, the
Lichnerowicz identityD2 = ∇∗∇+ s

4 (see [17], Chapter II, Theorem 8.8)
is an equality of self-adjoint operators. Here s is the scalar curvature
function of N , and since M is compact and s is positive on M and
translation-invariant on ∂M × [0,∞), s is uniformly bounded below
on N by a positive constant. This implies the partial isometry part U
of the polar decomposition of D is unitary. Let H = H0 ⊕ H1 be the
Hilbert space of L2-spinors, on which D acts. Note that U is of the

form

(
0 U∗0
U0 0

)
, where U0 is a unitary operator from H0 onto H1. The
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Kasparov class [D] is defined by H, U , the action of C∗(M ;Z/k), and
perhaps an additional action of a Clifford algebra.

Now we claim that indaD = 0. Let A = C∗(pt;Z/k) ∼= {f ∈
C0([0,∞),Mk) | f(0) a multiple of Ik}, and let B be the larger unital
algebra {f ∈ C0([0,∞],Mk) | f(0) a multiple of Ik}. (Scalars here may
be either real or complex, depending on the context.) Then B also acts
on H and (B,H, U) defines a class in K−n(B), i.e., our class in K−n(A)
lies in the image of a class in K−n(B) defined by the same operator U .
The reason is that C∞ functions ϕ on N that are eventually constant
on each cylinder βM×[0,∞) have vanishing gradient in a neighborhood
of infinity, and thus their commutator with D has compact support.
On the other hand, U = D|D|−1 and |D|−1 is pseudodifferential of
order −1. From this one can deduce [U,ϕ] = [D,ϕ]|D|−1 +D[|D|−1, ϕ]
is compact; the proof of this is quite similar to Proposition 3.3 in [11].
Here are the details. The first term, [D,ϕ]|D|−1, is the product of
a negative-order pseudodifferential operator with multiplication by a
function of compact support, so this is compact. The second term is
pseudodifferential of negative order and hence bounded; we want to
show it is compact. We have (using an identity from the proof of [4],
Proposition 17.11.3):

D[|D|−1, ϕ] =
1

π

∫ ∞

0
λ−1/2D

[
(D2 + λ)−1, ϕ

]
dλ, (5.1)

but

[(D2 + λ)−1, ϕ] = −(D2 + λ)−1[(D2 + λ), ϕ](D2 + λ)−1

and [(D2 + λ), ϕ] = [D,ϕ]D + D[D,ϕ] has compact support, hence
[(D2 + λ), ϕ](D2 + λ)−1 is compact, and then

D
[
(D2 + λ)−1, ϕ

]
= −D(D2 + λ)−1

[
(D2 + λ), ϕ

]
(D2 + λ)−1

is compact. Then by equation (5.1), the remaining term in [U,ϕ] is also
compact. Since U2 = 1 and U = U∗, there is nothing to check as far as
the other axioms for a Kasparov bimodule are concerned, so (B,H, U)
defines a class inK−n(B). Furthermore, we have a short exact sequence

0→ C0((0,∞],Mk)→ B → C(pt)→ 0,

with the ideal C0((0,∞],Mk) contractible, and thusK−n(B) ∼= Kn(pt).
The map B → C(pt) is split by the inclusion of scalar multiples of the
identity, under which the class of (B,H, U) pulls back to the class
of (H, U). So via the isomorphism K−n(B) ∼= Kn(pt), we see that
the class of (B,H, U) can be identified with class of U (perhaps with
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some auxiliary Clifford algebra action, if we’re in the case of the C`n-
linear real Dirac operator), which vanishes, since U is unitary. Hence
c∗([D]) = 0. ¤

This gives another proof of the “only if” direction of the following
theorem from [6]:

THEOREM 5.4 (Botvinnik [6]). LetMnbe a closed spin Z/2-manifold,
with n ≥ 6, and assume M and βM are connected and simply con-

nected. Then M admits a metric of positive scalar curvature in the

sense of Definition 5.1 if and only if the image αΣ(M) of the canon-
ical class defined by the spin structure in KOn(M ;Z/2) vanishes in
KOn(pt;Z/2).

REMARK 5.5. Note that the obstruction αΣ(M) ∈ KOn(M ;Z/2) of
Theorem 5.4 includes within it the obstruction to existence of a positive
scalar curvature metric on βM . Indeed, since n ≥ 6, dimβM ≥ 5, so
we know from [25] that βM admits a metric of positive scalar curvature
if and only if the usual index invariant α(βM) ∈ KOn−1(pt) vanishes.
Now the existence of spin structure onM with ∂M ≡ βMqβM implies
that the class of βM must be a 2-torsion class in ΩSpin

n−1 , which forces

the Â-genus of βM to vanish if n ≡ 1 (mod 4). On the other hand, we
claim that under the exact sequence

· · · −→ KOn(pt)
2
−→ KOn(pt)−→KOn(pt;Z/2)

∂
−→ KOn−1(pt)

2
−→ · · · ,

∂(αΣ(M)) = α(βM), so αΣ(M) 6= 0 if α(βM) is a non-zero 2-torsion
class. For example, if βM is an exotic 9-sphere with α(βM) a non-zero

2-torsion class in ΩSpin
9 , then βM q βM bounds a spin 10-manifold M

which can be given a Z/2-manifold structure, and αΣ(M) 6= 0.
To check this, observe that by Theorem 4.4, the topological in-

variant αΣ(M) coincides with inda(D), D the Dirac operator on M
(or more exactly on N , the manifold with cylinders attached). Let
[D] ∈ KO−i(C∗(M ;Z/2)) be the associated class. Via the exact se-
quence in Proposition 2.3, this restricts to [DβM ], the class of the Dirac
operator on βM , in

KO−i(C0(R)⊗ C(βM)⊗M2
) ∼= KOi−1(βM).

Similarly, Theorem 5.7 below is related to the “only if” direction of the
following theorem from [6]:
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THEOREM 5.6 (Botvinnik [6]). Let Mn be a closed spin η-manifold,
with n ≥ 7, and assume M and βM are connected and simply con-

nected. Then M admits a metric of positive scalar curvature in the

sense of Definition 5.1 if and only if the image αΣ(M) of the canonical
class defined by the spin structure in KUn(M) vanishes in KUn(pt).

THEOREM 5.7. Let (Mn, φ) be a closed spin η-manifold, and suppose
M admits a metric of positive scalar curvature in the sense of Definition

5.1. Then the analytic η-index inda(D) ∈ KOn(C) ∼= KOn−2(pt) of
Dirac operator on M (as defined in Definition 4.5) must vanish.
Proof. By the index theorem 4.8, inda(D) may be identified with

the index of the real Dirac operator on βM , which is an obstruction
to positive scalar curvature on βM [12]. However, a metric of positive
scalar curvature onM must by definition restrict to a metric of positive
scalar curvature on ∂M ∼= βM × S1 which is a product of a metric on
βM with the standard flat metric on S1. So such a metric can only
exist when βM admits a metric of positive scalar curvature. ¤

REMARK 5.8. One can also give another proof of Theorem 5.7 along
the lines of the proof of Theorem 5.3. In addition, the argument used
to prove Theorem 5.3 can be extended to give an interpretation of the
Z/k-index of the Dirac operator in a more general context.

THEOREM 5.9. Let Mn be a closed spin Z/k-manifold, equipped with
a Z/k-metric restricting on βM to a metric of positive scalar curvature.

Let N = M ∪∂M ∂M × [0,∞) and let D be the C`n-linear real Dirac
operator on N . Then D (acting on the Z/2-graded Hilbert space H of
L2 sections of the appropriate bundle of free right C`n-modules over
N) has finite-dimensional kernel, and the Z/k-index of D is the mod-k
reduction of the KO(pt)n-valued index of D (computed from the kernel
of D over N , viewed as a graded C`n-module).
Proof. Because N has uniformly positive scalar curvature on the

ends βM × [0,∞), the spectrum of D is bounded away from 0 on
the complement of a finite-dimensional subspace of H ([10], Theorem
3.2). Then if U is the partial isometry part of the polar decomposi-
tion of D, U is Fredholm and the Z/k-index of D is defined by the
triple (C∗R(pt;Z/k),H, U). As in the proof of 5.3, this Kasparov class
is in the image of KO−n(B), where B is a suitable unital extension
of C∗R(pt;Z/k) with the same KO-theory as the scalars. The class
in KO−n(B) that maps to the Z/k-index of D is defined by (U,H)
(together with the C`n-action), and the map

KO−n(B)→ KO−n(C∗R(pt;Z/k))
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can be identified with the map KOn(pt) → KOn(pt;Z/k), which is
simply reduction mod k. So indaD is the mod k reduction of the
KO(pt)n-valued index of D. ¤
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