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The expert reader can skip over these sections. Roughly speaking, each chapter of
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ventional mathematics books which follow the methodical “theorem-proof” style.
There are of course plenty of theorems and proofs, but my main objective has been
to show how several seemingly disparate subjects are closely linked with one an-
other, and to give readers an overview of some areas of current research. In some
places this happens at the expense of trying to cover everything systematically.
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of this book. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author and do not necessarily reflect the views of
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CHAPTER 1

Introduction and Motivation

1.1. Structure of Physical Theories

This section is intended to introduce certain key concepts from physics which
we will use later in the book. The treatment will be rather superficial, and is
intended for mathematicians without much background in physics. Any physicists
reading this book can probably skip ahead to Section 1.2.

1.1.1. Fields and Lagrangians.
1.1.1.1. Fields. Since the time of Maxwell and Faraday in the 1860’s, most

physical theories have been expressed in terms of fields1, e.g., the gravitational
field, electric field, magnetic field, etc. Originally, “field” meant (to quote the
Oxford English Dictionary) “a state or situation in which a force is exerted on any
objects of a particular kind (e.g., electric charges) that are present,” but came to
be “frequently used as if it denoted an identifiable causal entity.” Fields can be

• scalar-valued functions (physicists often call these scalars, which tends to
confuse mathematicians because the word “function” is understood but
not explicitly stated),

• sections of vector bundles (sometimes simply called vectors—again see the
comment on the previous item),

• connections on principal bundles2 (these are special cases of gauge fields),
or

• sections of spinor bundles (often called spinors).

1.1.1.2. Lagrangians and Least Action. In classical physics, the fields satisfy a
variational principle — they are extrema, or at least critical points, of the action
S, which in turn is the integral of a local functional L called the Lagrangian. This
is called the principle of least action. The Euler-Lagrange equations for critical
points of the action are the equations of motion.

The idea that physics should be governed by variational principles is very old,
and predates the notion of “field” itself. For example, Fermat around 1662 [63,
“Synthesis ad Refractiones,” pp. 173–179] proposed a theory of optics based on the

1In English, the word field has two mathematical meanings. One (a commutative ring in

which every non-zero element is invertible) is in abstract algebra and is not relevant here. That
term is translated in French as corps or in German as Körper. What we mean here is field as in
“vector field,” which is champs in French or Feld in German.

2A space E is called a principal G-bundle over another space X, for a topological group G, if
there is a continuous free G-action on E with quotient space X and a continuous surjective open

map p : E → X such that X has a covering by open sets U with each p−1(U) G-isomorphic to
U × G. A connection on a principal bundle, in the case where G is a Lie group and E and X
are smooth manifolds, is a consistent way of choosing a “horizontal” subspace He of TeE at each

e ∈ E, so that dp : He → Tp(e)X is an isomorphism for all e ∈ E.

1



2 1. INTRODUCTION AND MOTIVATION

principle that light travels along curves which minimize its travel time, which is a
functional of the path. This seemingly innocuous assumption turns out to imply
Snell’s law of refraction (when light passes from one medium to another, with
different speeds in the two media), and also to imply that light does not necessarily
travel along straight lines (if it is traveling through a medium with variable index
of refraction, such as a fluid with varying density).

The principle of least action in mechanics is due to Lagrange (in his famous
Mécanique Analytique of 1788) and to Hamilton, ca. 1835 [74]. But what we will
need below is the least action principle applied to the theory of fields. The following
two examples are the key ones for understanding 20th century physics. Yang-Mills
theory (in a slightly more complicated form) is needed for understanding elementary
particle physics; the Hilbert-Einstein action is basic to general relativity and thus
to the understanding of gravity.

But before we get to the examples, we need to say something about Lorentz
vs. Euclidean signatures in field theories. Indeed, a point which often confuses
mathematicians trying to read the physics literature is a frequent shuttling back
and forth between writing things in Lorentz and Euclidean signatures. The basic
equations of physics do not treat space and time totally equally, in the sense that the
natural metric on spacetime is a Lorentz metric, not a Riemannian one. However, in
the Lorentz metric, most of the integrals one needs (such as the one computing the
action) do not converge well, since one doesn’t have positivity for the Lagrangian.

Physicists are therefore fond of what’s called Wick rotation, replacing t by
it and thus “analytically continuing” from Lorentz to Euclidean signature. This
results in formulations which are better behaved mathematically but not as realistic
physically. Still, one can often use this to some advantage, and we will sometimes
do this without further ado.

Examples 1.1. Let M be a 4-manifold, say compact, representing spacetime.

(1) Yang-Mills Theory. The field for this theory is a connection A on a princi-
pal G-bundle, where G is some compact Lie group. The “field strength” F
is the curvature, a g-valued 2-form. (Here g is the Lie algebra of G.) The
action is S =

∫
M

TrF ∧∗F . (Here F ∧∗F is a 4-form with values in g; we
take its pointwise trace and integrate.) If the bundle is non-trivial, then
usually F cannot vanish, since Chern-Weil theory (Theorem 2.3 below)
relates F to the characteristic classes of the bundle.

(2) General Relativity (in Euclidean signature). In this theory, the field is a
Riemannian metric g on M . The action is S =

∫
M
Rdvol, where R is the

scalar curvature of the metric. The associated field equation is Einstein’s
equation.

1.1.2. Classical to Quantum Physics.
1.1.2.1. Quantum Mechanics. Unlike classical mechanics, quantum mechanics

is not deterministic, only probabilistic. The key property of quantum mechanics
is the Heisenberg uncertainty principle, that observable quantities are represented
by noncommuting operators A represented on a Hilbert space H. In the quantum
world, every particle has a wave-like aspect to it, and is represented by a wave
function ψ, a unit vector in H. The phase of ψ is not directly observable, only its
amplitude, or more precisely, the state

ϕψ(A) = A(ψ) = 〈Aψ,ψ〉
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which computes the expected (or expectation) value of an observable A for a par-
ticle with the given wave function. But the phase is still important, since phenom-
ena such as the Aharonov-Bohm effect (in which the phase of an electron beam is
changed without changing the amplitude) and interference depend on it. (One of
the important consequence of quantum mechanics is that there is no clear distinc-
tion between waves and particles. Every particle behaves somewhat like a wave, and
two particles can “interfere” with each other, just as waves can. This is responsible
for diffraction of electron beams, etc.)

1.1.2.2. Quantum Fields. The quantization of classical field theories, called
quantum field theory , is based on path integrals. The idea (not always 100% rigor-
ous in this formulation) is that all fields contribute, not just those that are critical
points of the action (i.e., solutions of the classical field equations). Instead, one
looks at the partition function

(1.1) Z =

∫
eiS(ϕ) dϕ or

∫
e−S(ϕ) dϕ ,

depending on whether one is working in Lorentz or Euclidean signature. (Here
we’ve taken ~ = 1; if we didn’t do this, since S has units of energy times time,
we should divide S by ~ ≈ 1.054 × 10−34 J s so as to get something dimensionless
that we can exponentiate.) The problem is that the integration is over all possible
fields ϕ, which live in an infinite dimensional space, so one needs to make sense
of the integral through some sort of regularization procedure. By the principle of
stationary phase, only fields close to the classical solutions should contribute much.

What one wants out of a quantum field theory is more than just the partition
function; it is a prediction for the measured values of certain observable quantities.
Consider a physical quantity A that takes a scalar value A(ϕ) when the fields of
the system are given by ϕ. Since all quantum theories are probabilistic in nature,
the best that we can hope for is to compute the expectation value of A, which
would be the average measured value of this quantity if we perform an experiment
a large number of times. This expectation value 〈A〉 is also given by a path integral,
namely

〈A〉 =
(∫

A(ϕ) eiS(ϕ) dϕ

)
/Z .

We see from this that the partition function is the universal denominator that comes
into the calculation of 〈A〉 for any observable A.

1.2. Some Basics of String Theory

1.2.0.3. Basic Ideas of String Theory. The basic idea of string theory is to
replace point particles (in conventional physics) by one-dimensional “strings.” At
ordinary (low) energies these strings are expected to be extremely short, on the
order of the Planck length,

lP =

√
~G

c3
≈ 1.616× 10−35 m .

A string moving in time traces out a two-dimensional surface called a world-
sheet. The most basic fields in string theory are thus maps ϕ : Σ → X, where Σ is
a 2-manifold (the worldsheet) and X is spacetime.
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String theory offers [some] hope for combining gravity with the other forces of
physics and quantum mechanics.

1.2.0.4. Strings and Sigma-Models. Let Σ be a string worldsheet and X the
spacetime manifold. String theory is based on the nonlinear sigma-model , where
the fundamental field is ϕ : Σ → X and the leading term in the action is

(1.2) S(ϕ) =
1

4πα′

∫

Σ

‖∇ϕ‖2 dvol ,

the energy of the map ϕ (in Euclidean signature). (In the physics literature, (1.2)
is called the string sigma model action or Polyakov action.) The constant α′,
called the Regge slope parameter, represents (typical string length)2, and 1/(2πα′)
is the string tension. We have to add to this various gauge fields (giving rise to
the fundamental particles) and a “gravity term” involving the scalar curvature of
the metric on X. Usually we also require supersymmetry ; this means the theory
involves both bosons and fermions and there are symmetries interchanging the two.3

(But this is a subject for a different course, such as the ones given by Freed [64] or
Varadarajan [166].)

1.2.0.5. The B-Field and H-Flux. For various reasons, it’s important to add
to the action (1.2) another term (sometimes called the Wess-Zumino term) of the
form

(1.3)
1

4πα′

∫

Σ

ϕ∗B ,

where B is a (locally defined) 2-form on spacetime, X. B is usually called the
B-field . It need not be closed or even globally defined, just as long as it makes
sense locally. (Recall the strings are really “small” in most cases.) But H = dB,
a 3-form, should always be a well-defined closed 3-form on X, usually called the
H-flux .

In fact, the 3-form H should correspond to an integral cohomology class, which
we will also call (by abuse of language) the H-flux, even though this overlooks the
torsion in H3(X). The reason for this is the following. Suppose ϕ(Σ) is an embed-
ded surface in X bounding two different 3-manifolds (think of solid handlebodies)
M and M ′. (See Figure 1.)

Since ∂M = ∂M ′ = ϕ(Σ), Stokes’ Theorem gives
∫

M

H =

∫

M

dB =

∫

∂M

B =

∫

Σ

ϕ∗B ,

and similarly with M ′ in place of M . So∫

M

H =

∫

M ′

H, and

∫

N

H = 0,

where N is the closed 3-dimensional submanifold of X obtained by gluing M and
M ′ together along their common boundary. (To make N oriented, reverse the

3For those unfamiliar with the terminology here, a boson is a particle like a photon that
obeys Bose-Einstein statistics; a fermion is a particle like the electron that obeys Fermi-Dirac
statistics, or in other words, that satisfies the Pauli exclusion principle. The fact that the universe
is as we see it depends very much on the fact that both kinds of particles are present. Fermions

are always represented by spinor fields. One way of explaining the difference between bosons and
fermions is that bosons transform under true representations of the rotation group SO(n), whereas
fermions transform under “genuine” representations of the double covering group Spin(n) that do

not descend to SO(n).
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Σ

M M’

Figure 1. A Surface in Spacetime Bounding Two Handlebodies

orientation on M ′, so that N = M ∪ϕ(Σ) −M ′.) Thus, for the sake of consistency,
we need H to pair to zero against every closed 3-dimensional submanifold N of X.

This seems to contradict the possibility of non-triviality of the de Rham class
of H, but we’ve neglected one important thing. By formula (1.1), it is only eiS , not
S itself, that counts. So if we only have

1

4πα′

∫

M

H ≡ 1

4πα′

∫

M ′

H mod 2πZ ,

or H integrating over each integral 3-homology class (like [N ]) to something in
8π2α′Z, that’s good enough for our purposes, and in physicists’ language, the theory
is free of anomalies .4

An interesting model for study, the Wess-Zumino-Witten model (WZW model)
has X = G a compact semisimple Lie group, say SU(2), and H the canonical 3-
form, coming from the trilinear pairing

(x, y, z) 7→ 〈[x, y], z〉
on the Lie algebra g (here 〈 , 〉 is an invariant inner product on g, such as the one
coming from the Killing form). This H is closed but not exact, so B cannot be
globally defined. (In fact, π3(X) ∼= Z for any compact simple Lie group G, and
H, if normalized correctly, has an integral de Rham class dual to the image of the
generator under the Hurewicz map.)

1.2.0.6. D-Branes. Physicists talk about both closed and open strings. The
terminology doesn’t quite match that of mathematicians. Both kinds of strings are
given by compact manifolds, but in the “open” case there is a boundary. So to
get a reasonable theory one has to impose boundary conditions. Usually, these are
Dirichlet or Neumann conditions on some submanifold of X where the boundary
of Σ must map. These submanifolds are traditionally called D-branes, “D” for
Dirichlet and brane a back-formation5 from membrane. Sometimes the name D-
brane is retained even without Dirichlet boundary conditions. Physicists also talk

4In general, an anomaly is an inconsistency in a theory, usually due to nontriviality of

some topological invariant. Thus physicists often look for topological conditions under which the
anomalies will vanish.

5The Oxford English Dictionary defines this as “The formation of what looks like a root-word
from an already existing word which might be (but is not) a derivative of the former.” Here of

course we are lopping off the mem in “membrane.”
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about Dp-branes or p-branes; that means branes with p space-like dimensions, or
dimension p + 1 (since usually one also has to allow for one time-like dimension).
That leads to the seemingly paradoxical study of (−1)-branes, which just means
points in X. Such one-point branes are also called instantons , as they are localized
at a single “instant” in spacetime. A schematic picture of a D-brane is shown in
Figure 2. Note that the open string is free to slide up and down the D-brane but
not normal to it.

D-brane

open string

Figure 2. Schematic Picture of a D-Brane

In post-1995 string theory, the D-branes play a fundamental role, and are often
viewed as fundamental objects in the theory. As we will see, they couple to the
(Ramond-Ramond6) fields.

1.2.0.7. The Five Different String Theories. So far we have neglected to men-
tion that there are really five different (supersymmetric) string theories, having
slightly different fields and Lagrangians. The differences between them have to do
with the gauge groups for some of the gauge fields, closed vs. open strings, orien-
tation properties of the strings, and chirality (left- vs. right-handedness). We will
not have time to go into the differences between them in detail, but most of the
discussion in this book will focus implicitly on types IIA and IIB. In a nutshell, the
five theories are:

• Type I. This is the one theory that involves unoriented strings, so that the
string worldsheet Σ can be a non-orientable surface like a Klein bottle.

• Type IIA. A theory with oriented strings where left-moving and right-
moving spinors have opposite handedness.

• Type IIB. A theory with oriented strings where left-moving and right-
moving spinors have the same handedness.

• E8 Heterotic. A theory where left-movers behave as in bosonic theory and
right-movers behave as in supersymmetric theory, and the gauge group is
the product of two copies of the exceptional Lie group E8.

6The fields representing particles in string theory lie in different sectors, depending on what

worldsheet boundary conditions they satisfy (see [14, pp. 122–124], [133, §10.2], or [175, §13.5]).
These are called the Ramond (R) and Neveu-Schwarz (NS) sectors. Since one must put the
left-moving and right-moving sectors together, that explains terms like “Ramond-Ramond” or

“NS-NS.”
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• SO(32) Heterotic. A theory where left-movers behave as in bosonic the-
ory and right-movers behave as in supersymmetric theory, and the gauge
group is a Lie group locally isomorphic to SO(32).

1.2.0.8. Textbook References on String Theory. We have deliberately kept our
treatment of string theory as short as possible, so the reader is urged to look at
some of the standard books on the subject. In particular, this is where to read
about the differences between the theories enumerated in Section 1.2.0.7 above.
Here are my own personal favorites.

From the physics point of view:

• J. Polchinski, String Theory, 2 vols., Cambridge, 1998. [132, 133]
• B. Zwiebach, A First Course in String Theory, Cambridge, 2004. [175]
• K. and M. Becker and J. Schwarz, String Theory and M -Theory, Cam-

bridge, 2007. [14]

From a more mathematical point of view:

• Quantum Fields and Strings: A Course for Mathematicians, 2 vols., Amer.
Math. Soc. and IAS, 1999. [51]

• J. Jost, Bosonic Strings: a Mathematical Treatment, Amer. Math. Soc.,
2001. [89]

• Mirror Symmetry, Amer. Math. Soc. and Clay Math. Inst., 2003. [81]

1.3. Dualities Related to String Theory

1.3.1. The Notion of Duality.
1.3.1.1. What is a Duality? A duality is a transformation between different-

looking physical theories that, rather magically, have the same observable physics.
Often, such dualities are part of a discrete group, such as Z/2 or Z/4 or SL(2,Z).

Example 1.2 (Electric-magnetic duality). There is a symmetry of Maxwell’s
equations in free space

(1.4)

∇ · E = 0, ∇ ·B = 0,

∂E

∂t
= c∇×B,

∂B

∂t
= −c∇× E,

given by E 7→ −B, B 7→ E. This is a duality of order 4.
A deep quantum extension of this duality was proposed by Dirac [53], and

later generalized by Goddard, Nuyts, and Olive [68] and by Montonen and Olive
[115]. Mathematicians who do not follow the physics literature might be interested
to learn that when this duality is applied to gauge fields with nonabelian gauge
group, such as those appearing in elementary particle theory, then the duality also
switches a Lie group G with its Langlands dual G∨ [93], just as in the Langlands
program in representation theory and automorphic forms [32]. But again, this is a
subject for another book.

1.3.1.2. Fourier Duality.

Example 1.3 (Configuration space-momentum space duality). Another exam-
ple from standard quantum mechanics concerns the quantum harmonic oscillator
(say in one dimension). For an object with mass m and a restoring force with
“spring constant” k, the Hamiltonian is

(1.5) H =
k

2
x2 +

1

2m
p2 ,
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where p is the momentum. In classical mechanics, p = mẋ. But in quantum
mechanics (with ~ set to 1),

(1.6) [x, p] = i .

We obtain a duality of (1.5) and (1.6) via m 7→ 1
k , k 7→ 1

m , x 7→ p, p 7→ −x.
This is again a duality of order 4, and is closely related to the Fourier transform,
since in the Schrödinger representation on L2(R), with x corresponding to the usual
coordinate on R, p is represented by the operator −i ddx , whose Fourier transform
is x. Recall, incidentally, that if Lebesgue measure is properly normalized, the
Fourier transform is indeed a unitary operator on L2(R) of period 4, with the
Hermite functions as eigenvectors.

1.3.2. T-Duality. One of the important dualities in string theory, called T-
duality (“T” for “target space” or “torus”), will be the main subject of this book.
This duality sets up an equivalence of string theories on two very different spacetime
manifolds X and X♯. The basic idea is that tori in X are replaced by their dual
tori in X♯. In the simplest case, that means that X has a circle factor of radius R

and X♯ has a circle factor of radius R̃ = α′

R .7 The duality also involves changes in
the metric and the B-field, known as the Buscher rules , after Buscher, who derived
them in 1987–88 [37, 38]. (A similar calculation was also done by Molera and
Ovrut [114].)

1.3.2.1. Derivation of T-Duality, Following Buscher. Consider the simplest
case. Take Σ a closed Riemannian 2-manifold and consider the action (1.2) for
a map to a circle with radius R, gotten by integrating a 1-form ω on Σ with inte-
gral periods:

S(ω) =
1

4πα′

∫

Σ

R2

α′ ω ∧ ∗ω.

Add a new parameter µ, a kind of Lagrange multiplier, and consider instead

S(ω, µ) =
1

4πα′

∫

Σ

(
R2

α′ ω ∧ ∗ω + 2µdω

)
.

For an extremum of S with respect to variations in µ, we need dω = 0, so we get
back the original theory. But instead we can take the variation in ω.

δS =
R2

4πα′2

∫

Σ

(
δω ∧ ∗ω + ω ∧ ∗δω +

2α′

R2
µdδω

)

=
R2

4πα′2

∫

Σ

δω ∧
(
2 ∗ ω +

2α′

R2
dµ

)
,

so if δS = 0, ∗ω = −α′

R2 dµ and ω = α′

R2 ∗ dµ. If η = ∗dµ, substituting back into
S(ω, µ) gives

S′(η) =
1

4πα′

∫

Σ

(
R2

α′

(
α′

R2

)2

η ∧ ∗η + 2
α′

R2
µd ∗ dµ

)

= − 1

4πα′

∫

Σ

α′

R2
η ∧ ∗η

7More generally, if V is a finite-dimensional real vector space and Λ is a lattice in V , then
the dual torus to T = V/(2πΛ) is T ♯ = V ∗/(2πα′Λ∗), where V ∗ is the dual space and Λ∗ consists

of elements γ ∈ V ∗ which take integral values on Λ ⊂ V .
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which is just like the original action (with η replacing ω, R̃ = α′

R replacing R).
1.3.2.2. Connection with Theta Functions. T-duality is also related to the clas-

sical theory of θ-functions. Consider a simple theory where Σ = S1 and X =
R/(2πRZ). (If you like, these are the space-like directions and there is another
[inert] time direction, a factor of R.) A string winding around X is like a wound-
up rubber band; the higher the winding number, the greater the energy. For
simplicity, let’s just sum over the semi-classical states, the harmonic maps x 7→
2πnRx : R/Z → X, instead of taking the path integral, which involves infinite-
dimensional integration over all paths. The action (1.2) for this map is

1

4πα′

∫ 1

0

∣∣∣∣
d

dx
(2πnRx)

∣∣∣∣
2

dx =
4π2n2R2

4πα′ =
π n2R2

α′ .

The partition function is therefore:

(1.7) ZR =

∞∑

n=−∞
e−π n

2 R2/α′

,

a classical θ-function.
Now the Poisson summation formula says that if f is a function in S(R), the

Schwartz space of rapidly decreasing functions, with Fourier transform f̂ , then

(1.8)

∞∑

n=−∞
f(n) =

∞∑

n=−∞
f̂(n).

Take f(x) = e−πx
2 R2/α′

. Since x 7→ e−π x
2

is its own Fourier transform, rescaling

shows that f̂(s) =
√
α′

R e−πs
2 α′/R2

. Thus applying the Poisson summation formula
(1.8) to f and keeping (1.7) in mind, we get the famous identity (used in the proof
of the functional equation of the Riemann ζ-function):

(1.9) ZR =

√
α′

R
ZR̃ or

√
RZR =

√
R̃ ZR̃ ,

where R̃ = α′/R, which is basically a precise form of T-duality.

1.3.3. Other Dualities in String Theory. An excellent general survey of
dualities in string theory may be found in [150]. Here we will be very brief.

1.3.3.1. S-Duality. Another important duality in string theory is S-duality (“S”
for “strong/weak”). This duality is actually an outgrowth of the classical electric-
magnetic duality (see Example 1.2), via a suggestion of Dirac [53] that the charge
of a magnetic monopole (which has never been observed) should be ~c/2 times the
reciprocal of the charge of an electron. Since the charge of an electron is small
and easily observable, the charge of a magnetic monopole should be large, which
perhaps explains why one has never been observed. S-duality interchanges the
strong coupling limit of one string theory with the weak coupling limit of another
one.

It has been pointed out [75] that S-duality and T-duality are closely linked.
S-duality involves the duality between a compact Lie group G and its Langlands
dual G∨. If we choose a Cartan subalgebra h in g, then the dual space h∗ can be
identified with a Cartan subalgebra in g∨, and we get a pair of dual tori, h/Λ and
h∗/Λ∗, where Λ is the coweight lattice for g and the weight lattice for g∨, while Λ∗

is the coweight lattice for g∨ and the weight lattice for g. The T-duality between
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these tori turns out to reproduce S-duality. Mixing S-duality and T-duality gives a
broader family of dualities, sometimes called U-duality (“U” for “unified”) [83].

1.3.3.2. AdS/CFT Duality. Another duality which has attracted a lot of atten-
tion recently is often called AdS/CFT duality . (Here AdS stands for “anti-de Sitter
space,” a spacetime manifold of constant curvature, and CFT stands for “confor-
mal field theory.”) This duality was discovered by Juan Maldacena [105], and in
general posits an equivalence between gauge theories in dimension d (usually 4) and
string theories in a spacetime of dimension d+1. There is by now a huge literature
on this. For more details, those interested can look at Section 1.4 below.

1.3.3.3. M-Theory and F-Theory. There are many other dualities connected
with string theory, which fit into various patterns which have been schematized by
drawings like:

F-theory

��
M-theory

uu zz✈✈✈
✈✈
✈✈
✈✈

�� %%❑❑
❑❑

❑❑
❑❑

❑❑

��
type I

S-duality

66
type IIA

T-duality

;;
type IIB

S-duality

II
heterotic E8

T-duality

%%
heterotic SO

Superstring theories are (to eliminate certain anomalies) required to be 10-
dimensional. The dualities between them seem to involve an 11-dimensional theory,
called M-theory, which reduces to 11-dimensional supergravity in the low energy
limit, and a 12-dimensional theory, called F-theory [164].

1.4. ✰ More on S-Duality and AdS/CFT Duality

1.4.1. S-Duality. Since quantum field theories in general, and string theories
in particular, are quite complicated, very few things can be computed exactly. For
that reason, one of the main calculational tools is perturbation theory : expanding
in a power series in some parameter, and computing the coefficients. Of course, for
this to give useful results, one has to be in a realm where this parameter is small,
so that there is hope that the series will converge reasonably well.

The most important dimensionless parameter in string theory is the string
coupling constant gS , which measures the intensity of interactions between strings,
so it is reasonable to consider perturbation expansions in this parameter, but only
if gS ≪ 1. However, the interesting feature of string theory is that gS is not a fixed
number; rather, it can be expressed as e〈Φ〉, the exponential of the expectation
value of a scalar-valued field Φ called the dilaton.

The main feature of S-duality, as opposed to T-duality for instance, is that
it exchanges one string theory with a small value of gS with another with a large
value of gS , by reversing the sign of the dilaton field Φ. T-duality, on the other
hand, results in a shift in the dilaton field, but in the form of a translation, so the
effect on the coupling constant is less dramatic.
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So the main consequence of S-duality is that it makes it possible to probe
aspects of string theory not amenable to perturbation theory (i.e., the realm where
gS ≫ 1) by linking them to the perturbative realm of another string theory with
gS ≪ 1.

1.4.2. AdS/CFT Duality. The discovery of the AdS/CFT duality originally
grew out of studies of Yang-Mills theory for U(N)-bundles in the limit as N → ∞,
and the observation that this theory behaves in ways similar to string theory. A
more precise conjecture is that, in the large N limit, supersymmetric Yang-Mills
theory on 4-dimensional Minkowski space is dual to type IIB string theory on
AdS5 × S5, where AdS5 is anti-de Sitter space, a 5-dimensional Lorentz manifold
of constant curvature. (This is (at least up to coverings) the homogeneous space
SO(4, 2)/SO(4, 1).)

The fact that string theory is connected to Yang-Mills theory is related to
something we will discuss in Section 2.2.2 in the next chapter: that D-branes nat-
urally carry bundles (in type IIB these are U(N)-bundles) and gauge fields. In
fact, open string massless states in type IIB string theory (recall that for physi-
cists, “open” strings are not what mathematicians call “open manifolds”—they
have worldsheets with boundary, the boundary contained in the D-branes) have
an effective Lagrangian that looks a lot like that of Yang-Mills theory. This point
of view makes it possible to construct the duality correspondence in the reverse
direction, from string theory to gauge theory.

In the AdS/CFT correspondence, the string coupling gS is supposed to corre-
spond (up to a constant factor of 4π) to a coupling constant g2YM in Yang-Mills
theory. (A factor of 1/g2YM should have been inserted in front of the Yang-Mills
action in Example 1.1 (1); we omitted it there so as not to overburden the reader.)
However, the duality is something like S-duality in that it is only supposed to give
a reasonable match between the two theories when one is weakly coupled and the
other is strongly coupled.

For readers who want to learn more, a good reasonably short survey of the
AdS/CFT correspondence, written by its discoverer, may be found in [104]. A
more comprehensive survey may be found in [1].





CHAPTER 2

K-Theory and its Relevance to Physics

2.1. A Quick Review of Topological K-Theory

This section provides a quick review of vector bundles, characteristic classes,
and topological K-theory. This is not intended to be a text on these subjects, but
just a review, so almost all proofs are omitted, but they are easily accessible in the
literature. The material should be quite familiar to topologists. There are many
good books on this material, for those who want more details. I would especially
recommend [76] for most of these topics, as well as [112, 86] for vector bundles
and characteristic classes and [6, 94, 128] for topological K-theory. The book [85]
covers many of the same topics, but is intended more for physicists.

2.1.1. Vector Bundles. Let X be a locally compact Hausdorff space. A
family of vector spaces over X is given by a continuous open surjective map π : E →
X, with E locally compact Hausdorff, with scalar multiplication and vector addition
maps, C × E → E and E ×X E → E, satisfying certain obvious axioms, making
Ex = π−1(x) into a vector space (over C) for each x ∈ X, and so that the vector
space structures on the fibers Ex “vary continuously” in x. Such “families of vector
spaces over X” form a category, with the morphisms given by commuting diagrams

E1
ϕ //

π1

  ❆
❆❆

❆❆
❆❆

❆
E2

π2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

X

with ϕ linear on fibers. A vector bundle over X is then a family of vector spaces
over X, E, which is locally trivial, in that there is an open covering {Uj} of X with
E|Uj

∼= Uj × Cn in the category of vector spaces over Uj for each j.
Vector bundles pull back under continuous maps. If π : E → X is a vector

bundle over X and if f : Y → X is a continuous map, then f∗(E) is defined by
means of the pull-back diagram

f∗(E)
f̂ //

f∗π

��

E

π

��
Y

f // X.

Here f∗(E) = {(y, e) ∈ Y ×E | f(y) = π(e)}, f∗π is projection onto the first factor,

and f̂ is projection onto the second factor. We leave it to the reader to check that
the local triviality condition is preserved under this operation.

Two useful operations on vector bundles are the direct sum and tensor product .
If E and F are vector bundles over X, then E⊕F is the vector bundle whose fiber

13
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over x ∈ X is Ex ⊕ Fx, and E ⊗ F is the vector bundle whose fiber over x ∈ X is
Ex⊗Fx. We leave it to the reader to give the (easy) rigorous definition. Note that
the rank (fiberwise dimension) of E ⊕F is the sum of those for E and for F , while
the rank of E ⊗ F is the product of those for E and for F

2.1.2. Classification of Vector Bundles by Cohomology. There are two
[equivalent] ways to classify vector bundles (in the category of vector spaces over
X): using (Čech) cohomology and using homotopy theory. For simplicity let’s take
X compact.

The cohomology classification uses transition functions . If E
π−→ X is a vector

bundle trivialized by the covering {Uj}, then on Uj∩Uk we have two trivializations,
the one coming from Uj and the one coming from Uk. These need not coincide,
but must be related by continuously varying automorphisms of Cn, i.e., by a map
gjk : Uj ∩ Uk → GL(n,C). The maps gjk satisfy the cocycle identities

{
gjkgkj = 1,

gjkgkℓgℓj = 1 on Uj ∩ Uk ∩ Uℓ.
However, if we can choose maps hj : Uj → GL(n,C) for each j, such that gjk =

hjh
−1
k for all j and k, then we can modify the trivialization over Uj by hj so that

all the trivializations match up and the bundle is trivial. In other words, the class
of the bundle depends on the class of the cocycle {gjk} modulo coboundaries, or
in fancier language, on a class in H1(X,GL(n,C)), where GL(n,C) is the sheaf

of germs of GL(n,C)-valued continuous functions. For n > 1, this is nonabelian
cohomology. (The reader who does not know about sheaves can ignore most of
this, and instead think of a more naive view of Čech cohomology, defined as the
quotient of the group of cocycle systems {gjk} modulo coboundaries, those of the

form gjk = hjh
−1
k . More exactly, this is the Čech cohomology for a fixed covering

{Uj}, and then one has to pass to a limit as the coverings get finer and finer.)

2.1.3. Classification of Line Bundles. For n = 1 (the case of line bundles),
GL(1,C) = C× and we have an exact sequence of sheaves

0 → Z
2πi−−→ C

exp−−→ C× → 1.

Since the sheaf C is “fine” and thus has no higher cohomology, we get an exact
sequence

0 = H1(X,C)
exp−−→ H1(X,C×) → H2(X,Z) → H2(X,C) = 0,

and thus line bundles are classified by H2(X,Z). In fact, one can check that one
gets an isomorphism of groups

(2.1) PicX ∼= H2(X,Z),

where Pic, the (topological) Picard group of X, denotes the group of line bundles,
with group operation given by fiberwise tensor product over C.

2.1.4. Classification of Vector Bundles by Homotopy Theory. The
classification by homotopy theory is based on the fact that every vector bundle
E (over a compact base X) is a direct summand in some trivial bundle X × CN .
Here N can be much larger than the rank n of the bundle. But this means that
E can be viewed as continuous way of selecting a rank-n subspace from CN , or as
a map ϕ : X → Gr(n,N), where Gr(n,N) is the Grassmannian of n-dimensional
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subspaces in CN . Furthermore, homotopic maps X → Gr(n,N) define isomorphic
bundles, and isomorphic bundles give rise to homotopic maps, at least if one takes
N sufficiently large. Thus we get a bijection

Vectn(X) ∼= [X, lim
N→∞

Gr(n,N)],

where Vectn(X) is the set of isomorphism classes of rank-n vector bundles over
X, and [X,Y ] is the set of homotopy classes of maps from X to Y , that is, the
set of path components of Map(X,Y ). The space Gr(n,N) can be identified with
the homogeneous space U(N)/(U(n)×U(N − n)), and so limN→∞ Gr(n,N) is the
quotient of limN→∞ U(N)/U(N − n) by the free action of U(n). This space is
therefore usually called BU(n). When n = 1, this is CP∞, whose cohomology ring
is a polynomial ring on a single generator in degree 2. Pulling back this generator
to X recovers our earlier classification (2.1).

The space BU(n) is a special case of what is called in topology a classifying
space. A classifying space for a homotopy-invariant functor F is a space BF with
the property that F (X) is in natural bijection with homotopy classes of maps
X → BF . We will encounter several other examples later in this book.

2.1.5. The Splitting Principle. Attached to vector bundles are certain ca-
nonical cohomology classes, the Chern classes. There are several ways to define
these. One method uses the classification of line bundles via H2 (recall (2.1)),
along with:

Lemma 2.1 (Splitting Principle). Given a compact space X and a rank-n vector
bundle E over X, there is a compact space Y and a map f : Y → X, such that f∗

is injective on cohomology (one can also arrange for it to be injective on K-theory,
to be defined below) and such that f∗(E) splits as a direct sum of line bundles :
f∗(E) ∼= L1 ⊕ · · · ⊕ Ln.

This means that for many purposes, we can always pretend that a vector bundle
splits into line bundles. Such a splitting for physicists corresponds to a symmetry
breaking from U(n) to U(1)n.

2.1.6. Chern Classes.

Definition 2.2. Let X, E, Y , and f be as in Lemma 2.1. Define c(f∗(E))
to be

∏n
j=1(1 + c1(Lj)), where c1 is the class in H2 attached to a line bundle

via (2.1). This has the form 1 +
∑n
j=1 cj(f

∗(E)), where cj(f
∗E) ∈ H2j(X,Z) is

the j-th elementary symmetric function of the c1(Lj). Then define c(E) so that
f∗(c(E)) = c(f∗(E)). (Of course one has to check that c(f∗(E)) lies in the image
of f∗ and that the resulting class c(E) is independent of the choice of Y and f .)

An alternate approach is to use the homotopy classification of rank-n vector
bundles via maps to

BU(n) = lim
N→∞

Gr(n,N).

One shows H∗(BU(n),Z) is a polynomial ring on classes cj ∈ H2j(BU(n),Z), and
then if E over X is classified by f : X → BU(n), we define cj(E) = f∗(cj).
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2.1.7. Connections. There is another approach to Chern classes, more fa-
miliar to physicists. Let π : E → X be a vector bundle. Put a hermitian metric on
E (a smoothly varying family of inner products on the fibers). A connection on E
is a way of relating one section to another, and is defined by means of a “directional
derivative” operator

∇ : Γ∞(X,TX)× Γ∞(X,E) → Γ∞(X,E) : (Y, s) 7→ ∇Y (s)

(here Γ∞ stands for smooth sections, TX for the tangent bundle) satisfying

∇Y (f · s) = Y f · s+ f · ∇Y (s).

We can alternatively think of ∇ as an operator

Γ∞(X,E) → Γ∞(X,T ∗X ⊗ E)

from sections of E to 1-forms with values in E. As such, it can be iterated, so ∇2

is an operator from sections of E to 2-forms with values in E. Unlike the exterior
derivative d, which satisfies d2 = 0, one need not have ∇2 = 0, but one can check
that all the derivatives in ∇2 cancel out, so that it is given by a two-form Θ with
values in End(E), called the curvature of the connection.

2.1.8. Chern-Weil Theory. More precisely,

Θ(Y,W ) = ∇Y∇W −∇W∇Y −∇[Y,W ],

and Θ is a 2-form with values in End(E).

Theorem 2.3 (Chern-Weil). The de Rham classes of the coefficients of the
characteristic polynomial of

−1

2πi
Θ

(viewed as a matrix of 2-forms) are independent of the choice of connection and lie
in the image of Heven(X,Z) → Heven(X,R).

One can then check that these classes are (up to a sign) the images of the cj(E)
in Heven(X,R). A detailed proof may be found in [57]. We will content ourselves
here with a single example.

Example 2.4 (The Hopf line bundle). Identify S2 with CP1, the space of 1-
dimensional subspaces of C2. By definition, we have a subspace Ex of C2 attached
to each x ∈ CP1, and these vary continuously with x, so they fit together to form
a rank-1 complex vector bundle, i.e., a line bundle E over S2. If E⊥

x denotes the
orthogonal complement to Ex in C2 (for the usual hermitian inner product on C2),
then the E⊥

x also fit together to form a line bundle E⊥ over S2, and clearly E⊕E⊥

is the trivial rank-2 bundle S2×C2 → S2. Projection from this trivial bundle down
to E is given by a continuous map P : S2 → M2(C), whose image at each point is
a rank-one idempotent. If we view S2 as the one-point compactification of C, then
at a point z = x + iy ∈ C this is orthogonal projection onto the span of (z, 1) in
C2, i.e.,

P (z) =
1

|z|2 + 1

(
|z|2 z
z̄ 1

)
=




zz̄

zz̄+1

z

zz̄+1

z̄

zz̄+1

1

zz̄+1


 ,

whereas by continuity,

P (∞) = lim
z→∞

1

|z|2 + 1

(
|z|2 z
z̄ 1

)
=

(
1 0
0 0

)
.
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We can define a connection ∇ on E by first taking the usual directional derivative
for sections of the trivial bundle, then projecting back into E by means of P . Note
that since P (z)2 = P (z), we have

∂P

∂z
P + P

∂P

∂z
=
∂P

∂z
or P

∂P

∂z
=
∂P

∂z
(1− P ),

and similarly with ∂P
∂z̄ in place of ∂P∂z . Also, for a section f of E, f = Pf , so

∂P

∂z
f + P

∂f

∂z
=
∂f

∂z
or (1− P )

∂f

∂z
=
∂P

∂z
f,

and similarly with ∂P
∂z̄ in place of ∂P∂z . So the curvature becomes

Θ

(
∂

∂z
,
∂

∂z̄

)
f

= P (z)
∂

∂z

(
P
∂f

∂z̄

)
− P (z)

∂

∂z̄

(
P
∂f

∂z

)

= P (z)
∂P

∂z

∂f

∂z̄
+ P (z)

∂2f

∂z∂z̄
− P (z)

∂P

∂z̄

∂f

∂z
− P (z)

∂2f

∂z∂z̄

=

(
P (z)

∂P

∂z

)
∂f

∂z̄
−
(
P (z)

∂P

∂z̄

)
∂f

∂z

= P
∂P

∂z
(1− P )

∂f

∂z̄
− P

∂P

∂z̄
(1− P )

∂f

∂z

= P

(
∂P

∂z

∂P

∂z̄
− ∂P

∂z̄

∂P

∂z

)
f .

Thus

Θ

(
∂

∂z
,
∂

∂z̄

)

= P

(
∂P

∂z

∂P

∂z̄
− ∂P

∂z̄

∂P

∂z

)

=
1

(1 + |z|2)5
(
|z|2 z
z̄ 1

)((
z̄ 1

−z̄2 −z̄

)(
z −z2

−z̄2 −z̄

)
−
(

z −z2
−z̄2 −z̄

)(
z̄ 1

−z̄2 −z̄

))

=
1

(1 + |z|2)3
(
−|z|2 −z
−z̄ −1

)

and so TrΘ = −
(
1 + |z|2

)−2
dz ∧ dz̄. Since dz ∧ dz̄ = −2idx ∧ dy,

−1

2πi
TrΘ =

1

2πi

1

(1 + |z|2)2
dz ∧ dz̄ = − 1

π (1 + |z|2)2
dx ∧ dy,

which integrates over C to

− 1

π

∫ 2π

0

∫ ∞

0

1

(1 + r2)
2 r dr dθ = −1,

which shows c1(E) = −1 (when we identify H2(S2,Z) with Z). (Note: some people
use a reversed sign convention in which c1(E) = 1.)
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2.1.9. The Chern Character. The total Chern class behaves well under
direct sum of vector bundles:

c(E ⊕ E′) = c(E)c(E′),

but not so well under tensor products. So we introduce another function of the
Chern classes, the Chern character , that satisfies

Ch(E ⊕ E′) = Ch(E) + Ch(E′), Ch(E ⊗ E′) = Ch(E) Ch(E′).

For a line bundle L, let

Ch(L) = exp(c1(L)) = 1 + c1(L) +
1
2c1(L)

2 + · · · .
For general vector bundles, we use the Splitting Principle (Lemma 2.1) and define

Ch(L1 ⊕ · · · ⊕ Ln) =
n∑

j=1

Ch(Lj).

Note that the Chern character lives in H∗(X,Q), not H∗(X,Z), since the power
series for the exponential function involves denominators.

2.1.10. What is K-Theory? For many purposes (and we will see a case in
physics), one wants to be able to add and subtract vector bundles. This is done
using (topological) K-theory. For X a compact Hausdorff space, we define K(X) to
be the group completion or Grothendieck group of the monoid of isomorphism classes
of vector bundles over X. In other words, K(X) is the set of formal differences
[E]− [F ], where E and F are vector bundles over X, and where

(2.2) [E]− [F ] = [E′]− [F ′] ⇔ E ⊕ F ′ ⊕G ∼= E′ ⊕ F ⊕G for some G.

This is an abelian group, and it becomes a commutative ring if we let

([E]− [F ]) · ([E′]− [F ′]) = [E ⊗ E′] + [F ⊗ F ′]− [E ⊗ F ′]− [F ⊗ E′].

The Chern character gives a ring homomorphism K(X) → Heven(X,Q).

Examples 2.5. We will compute K(X) for X = S1 and S2. First we need to
compute some homotopy groups of the complex Grassmannians. Note that U(n)
acts transitively on the unit sphere S2n−1 of Cn, with isotropy group U(n − 1) at
(0, · · · , 0, 1). So we have a fibration U(n− 1) → U(n) → S2n−1. Since U(1) = S1,
the long exact homotopy sequence

π2(U(n− 1)) → π2(U(n)) → π2(S
2n−1) = 0

→ π1(U(n− 1)) → π1(U(n)) → π1(S
2n−1) → 0

shows by induction on n that π2(U(n)) = 0 and π1(U(n)) ∼= Z for all n, with the
map π1(U(n − 1)) → π1(U(n)) an isomorphism for all n ≥ 2. Now let’s compute
π2(Gr(n,N)) via the fibration U(n)× U(N − n) → U(N) → Gr(n,N). We have

0 = π2(U(N)) → π2(Gr(n,N)) → π1(U(n)× U(N − n))

∼= Z⊕ Z
α−→ Z ∼= π1(U(N)) → π1(Gr(n,N)) → 0,

with the map α identified to (a, b) 7→ a+b. So Gr(n,N) is always simply connected,
with π2(Gr(n,N)) ∼= Z, for n ≥ 1 and N ≥ n+ 1.

(1) LetX = S1. Since the complex Grassmannian Gr(n,N) is simply connected
for all n and N , every vector bundle over X is trivial, and is determined up to
isomorphism by its rank (or dimension). Thus the semigroup of equivalence classes
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of vector bundles over X can be identified with N, and taking the Grothendieck
group introduces virtual bundles of negative dimension. So K(X) ∼= Z.

(2) Let X = S2. Since π2(Gr(n,N)) ∼= Z and the map Gr(n,N) → Gr(n,N+1)
induces an isomorphism on π2, we see π2(BU(n)) ∼= Z for any n ≥ 1. Furthermore,
the map π2(BU(n−1)) → π2(BU(n)) is an isomorphism for all n ≥ 2. This implies
that any vector bundle of rank n ≥ 1 over S2 is isomorphic to the direct sum of a
line bundle (characterized by its Chern class c1) and a trivial bundle of rank n− 1.
Thus K(S2) ∼= Z ⊕ Z, the first Z given by the rank of the bundle and the second
given by its Chern class c1.

2.1.11. Bott Periodicity. We define K-theory with compact supports for lo-
cally compact spaces by letting

K(X) =def ker ι
∗ : K(X+) → K(pt),

where X+ = X ∪ {∞} is the one-point compactification of X, and ι : pt → X+

is the inclusion of the point at infinity into X+. Untangling the definitions shows
that this is the same as the Grothendieck group of vector bundles on X which are
trivialized in a neighborhood of infinity, i.e., which are trivial off a compact set.
With the understanding that, if X is already compact, X+ = X∐{∞}, this extends
the old definition. We let K−j(X) = K(X × Rj).

Theorem 2.6 (Bott Periodicity). For any locally compact space X, there is a
natural isomorphism K(X) → K(X × R2).

The proof of this theorem is rather difficult and can be found in [6, 94, 76,
16, 49], or other books on topological K-theory. But we should at least explain
where the isomorphism comes from. In Example 2.5, we computed that K(S2) ∼=
Z ⊕ Z. In fact, in Example 2.4, we exhibited a specific line bundle E over S2

which, together with the trivial bundle, generates K(S2). The formal difference b =
1− [E] has virtual dimension 0, and thus defines a generator for K(R2) (remember
this is K-theory with compact supports, so it is the same as the relative K-group
K(S2, {∞})). The map K(X) → K(X × R2) is given by the (external) product
with b, i.e., by x 7→ x × b. This is an isomorphism when X is a point, simply by
our calculations for S2. One can then show in various ways that it extends to an
isomorphism for arbitrary X.

Bott periodicity has the consequence that Kj(X) makes sense whether or not
j is non-positive, and we can think of K∗(X) as being Z/2-graded.

2.1.12. K-Theory and Cohomology. It turns out that the functor X  
K∗(X) (extended to compact pairs by letting K∗(X,A) = ker c∗ : K∗(X/A) →
K∗(pt)) becomes a cohomology theory on the category of compact (Hausdorff)
spaces, or on the category of locally compact spaces and proper maps. In other
words, it satisfies the Eilenberg-Steenrod axioms except for the dimension axiom.
The theory is Z/2-graded, so there are only two groups, K = K0 and K1 = K−1.

What’s the connection with ordinary cohomology? It turns out that the Chern
character K(X) → Heven(X,Q) becomes a rational isomorphism of cohomology
theories, sending products in K(X) to cup products in cohomology. But the torsion
inK∗(X) andH∗(X,Z) can differ. For example, all torsion inH∗(RPn,Z) has order
2, whereas K∗(RPn) has torsion of order going to infinity as n→ ∞.
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2.1.13. The Atiyah-Hirzebruch Spectral Sequence. The connection be-
tween K∗(X) and H∗(X,Z) is a little more subtle, and is governed by something
called the Atiyah-Hirzebruch spectral sequence.

Theorem 2.7 (Atiyah-Hirzebruch). There is a spectral sequence converging to
K∗(X) with Ep,q2 = Hp(X,Kq(pt)). Note that Kq(pt) = Z for q even, 0 for q odd.
The first non-zero differential is d3 : H

p(X,Z) → Hp+3(X,Z), which is equal to
the Steenrod operation Sq3.

For those unfamiliar with spectral sequences, this basically says that there is an
iterative process for computing K∗(X) from H∗(X,Z), where at each stage of the
process, one computes the cohomology of the result of the previous stage Er with
regard to a differential dr (only affecting torsion). More exactly, there is a filtration
on K∗(X) for which the associated graded group E∞ is the limit of groups Er,
where Er+1 is the cohomology of Er with respect to a differential dr. This iterative
process starts with (E2, d2), which looks like:

Kq(pt)

•

OO

**❯❯❯
❯❯❯
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The differential dr maps Ep,qr to Ep+r,q+1−r
r , and since Ep,qr = 0 for q odd, only

the odd differentials d3, d5, · · · can be non-zero. Thus E3 = E2, for example. Once
one has computed E∞, this computes the K-theory up to iterated extensions (of
abelian groups). The fact that differentials only involve torsion has the following
consequence:

Corollary 2.8. If X is a finite CW complex and if H∗(X,Z) is torsion
free, then K∗(X) is also torsion free, with K(X) ∼= Heven(X,Z) and K1(X) ∼=
Hodd(X,Z) (as abstract groups).

Another useful simple consequence of Theorem 2.7 is the following.

Corollary 2.9. If X is a finite CW complex, then the order of the torsion
subgroup of K0(X) is no greater than the order of the direct sum of the torsion
subgroups of the H2k(X,Z), and the order of the torsion subgroup of K1(X) is no
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greater than the order of the direct sum of the torsion subgroups of the H2k+1(X,Z).
Furthermore, if all torsion in H∗(X,Z) is p-primary for some prime p, then all
torsion in K∗(X) is p-primary.

However, as already pointed out, the order of the torsion in K∗(X) can differ
from that in H∗(X,Z), and it can happen that H∗(X,Z) has torsion but K∗(X)
does not.

2.2. K-Theory and D-Brane Charges

2.2.1. An Analogy: Charges in Electromagnetism. Electric charge is
quantized, i.e., a discrete invariant: all observed charges are integral multiples of
the charge of the electron. This was confirmed experimentally in Millikan’s famous
oil drop experiment of 1900–1913. (Even if one allows for quarks, their charges
should be integral multiples of 1

3 the charge of the electron.) One can try to
look for a topological explanation of this fact. In 4-dimensional spacetime, the
electromagnetic field can be identified with a 2-form F , which is locally given as
dA, where A is the potential (combining the electrostatic potential and the 3-
dimensional vector potential for magnetism). But this can’t be right globally, since∫
S2 F 6= 0 by Gauss’s Law (S2 linking the worldline of an electron). Dirac [53]
therefore suggested [in language which when translated into modern terms means]
that A should be viewed as a connection on a line bundle with base the complement
of the worldlines of the charged particles. In physicist’s language, A is then a U(1)
gauge field, and F is the field strength (= curvature). Note that H2(R4rR,Z) ∼= Z,
and by Chern-Weil, [F ] is c1 of the line bundle, up to a constant. So assuming we
accept Dirac’s idea, charge is quantized!

2.2.2. Chan-Paton Bundles. As we indicated before, D-branes are subman-
ifolds of the spacetime manifold X on which “open” strings are allowed to end. In
superstring theories, X is a 10-dimensional Lorentz manifold, often taken to be a
product of a Riemannian manifold with R (representing time). One often talks
about Dp-branes or p-branes, the p (with values ≤ 9) representing the dimension of
the space-like part of the brane. (So caution: a p-brane is really (p+1)-dimensional.)

The D-branes carry Chan-Paton bundles . The physical idea behind this is as
follows. Suppose n different D-branes coincide, i.e., map to precisely the same
submanifold of spacetime. According to the principles of quantum mechanics, it
should be possible to “mix” states supported on the different branes, so that there
is a local U(n) gauge symmetry. But this is only a local symmetry, as the mixing
matrix (in U(n)) can vary from point to point along the brane. So the brane
carries a U(n) gauge field. This analysis is only local, so globally, the brane carries
a bundle of dimension n and the gauge field is a connection on the bundle, whose
“field strength” is the curvature of the connection. Branes and their Chan-Paton
bundles are allowed to coalesce or to split apart, so the rank n of the bundle can
vary.

Just as there are antiparticles, there are antibranes . The bundles on such
branes should be viewed as having negative dimension.

2.2.3. Charges and K-Theory. Just as in the case of electromagnetism, the
D-branes carry topological charges associated to the nontriviality of the Chan-Paton
bundles. In the case of electromagnetism, if X is spacetime with the worldlines of
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the electrons removed, X admits a line bundle whose class in PicX is equivalent
to knowledge of the charges. The case of string theory is analogous, but the gauge
theories involved are nonabelian, i.e., involve vector bundles of higher rank. Thus
physicists [113, 173, 174, 106, 119] arrived at the idea that charges should be
classified by K-theory of spacetime.

2.2.4. The Minasian-Moore Formula. Some of the evidence for this idea
comes from the Minasian-Moore formula [113] for D-brane charges. If we are only
dealing with 9-branes (those that fill all of spacetime), then the K-theory charge
is just the class [E] of the Chan-Paton bundle E. Similarly, the charge of a 9-
antibrane is −[E]. For branes W which are proper submanifolds of spacetime X,
the embedding of W in X is also relevant. When W and X have spinc structures
(which means one can define spinors and thus a theory of fermions), Minasian and
Moore found that the K-theoretic charge should be identified with f!([E]), where
f : W →֒ X and f! is the Gysin map in K-theory, a “wrong way” map defined by
Atiyah-Singer [7].

It is actually somewhat easier to think of brane charges as living inK-homology,
the homology theory dual to K-theory. In this theory, maps go the “right way,” so
we just compute the K-theory charge in K∗(W ) and push it forward under f∗.

2.3. K-Homology and D-Brane Charges

2.3.1. Topological K-Homology. A geometric realization of K-homology
was given by Baum and Douglas [13, 12]. IfX is a compact space, anyK-homology
class on X may be defined by a “cycle” consisting of:

(1) a compact spinc manifold W with a map f : W → X;
(2) a [virtual] vector bundle E over W .

We add cycles to make an abelian semigroup using disjoint union. Two such
cycles are homologous, i.e., define the same K-homology class, if they are related
by the equivalence relation generated by:

(1) spinc bordism, i.e., if M is a compact spinc manifold with boundary W , if
E is a vector bundle over M , and if f : M → X, then (W,E|W , f |W ) = 0;

(2) the relation (W,E1, f) + (W,E2, f) = (W,E1 ⊕ E2, f);
(3) “vector bundle modification” (a way of building in Bott periodicity).

2.3.2. Analytical K-Homology. Another realization of K-homology (i.e.,
another definition of cycles that yields an isomorphic theory) is due to Kasparov,
and is based on generalized elliptic operators or Fredholm modules . This is a special
case of Kasparov’s KK-theory for C∗-algebras, in that K∗(X) (X compact) is given
by KK∗(C(X),C). An even-dimensional K-homology cycle on X is given by a
Z/2-graded Hilbert space H = H0 ⊕ H1 with a ∗-representation of C(X), and an
odd bounded self-adjoint operator T such that T 2 − 1 and [T, f ], f ∈ C(X), are
compact. (The typical example is X a compact manifold, T = D(1 + D2)−1/2

for some self-adjoint elliptic first-order partial differential operator, like the Dirac
operator, andH the space of L2 sections of the vector bundle on which D acts.) The
equivalence relation is generated by homotopy, “block addition,” and the relation
that (H, T ) is trivial if T can be changed by a compact operator so that T 2 = 1
and [T, f ] = 0, f ∈ C(X). Odd-dimensional cycles in analytic K-homology are
defined similarly, except that we drop the grading on H and the requirement that
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T be odd. (An interesting exercise is to convince yourself that if you start with an
even-dimensional K-homology cycle and forget the grading on H so as to get an
odd-dimensional cycle, then as an odd cycle, it is trivial.)

2.3.3. Relating the Two Realizations of K-Homology. Now we can ex-
plain how the two realizations of K-homology are related. If W is a closed spinc

manifold, it admits a Dirac operator D. If E is a vector bundle over W and
f : W → X, we form DE , “Dirac with coefficients in E.” This defines a class in
the Kasparov model of K∗(W ), the dimension given by the dimension of W mod
2. If f : W → X, where X is a compact space, we send the class of (W,E, f) (in
the Baum-Douglas model of K-homology) to f∗([DE ]) in the Kasparov model, and
this gives the isomorphism.1

2.3.4. Brane Charges in K-Homology. Now we can explain how brane
charges are defined in K-homology. If W is a D-brane in X with Chan-Paton
bundle E, then if f denotes the inclusion map W →֒ X, (W,E, f) gives a class in
K∗(X) via the Baum-Douglas model, provided that W is spinc. We will see later
when this condition needs to be modified, but this condition is usually needed for
anomaly cancellation [65].

The identification of D-brane charges withK-homology classes is Poincaré dual
to the identification of these charges with K-theory classes. So the two points of
view are equivalent, at least under mild conditions on X.

1I am suppressing one little technical point: to get an isomorphism, we need to assume X

is homotopically finite. The reason is that Baum-Douglas K-homology is like singular homology,
while KasparovK-homology is like what is called Steenrod homology. These two kinds of homology
theories agree on finite CW complexes but not on general compact spaces. However, this is not

an issue for the spaces we care about for physical applications.





CHAPTER 3

A Few Basics of C∗-Algebras and Crossed

Products

3.1. Basics of C∗-Algebras

3.1.1. Basic Definitions and Theorems. C∗-algebras will play a big role
in the rest of this book. There are a few reasons why they are especially useful for
noncommutative geometry and mathematical physics:

• Compared to noncommutative algebras in general, they have a fairly rigid
structure, which makes them easier to classify.

• They generalize the notion of algebras of continuous functions (on locally
compact Hausdorff spaces).

• They have isometric representations on a Hilbert space, which is required
by the axioms of quantum mechanics. In fact, as we shall see, a theorem
of Gelfand and Naimark (Theorem 3.4) characterizes C∗-algebras by this
property.

An algebraA (say over C) is called a Banach algebra if it is equipped with a complete
norm (thus making A into a Banach space) with the compatibility condition

(3.1) ‖ab‖ ≤ ‖a‖ · ‖b‖ .
If there is also a conjugate-linear map a 7→ a∗ satisfying

(a∗)∗ = a, (ab)∗ = b∗a∗, ‖a∗‖ = ‖a‖ ,
then A is called a Banach ∗-algebra. Finally A is called a C∗-algebra if it is a
Banach ∗-algebra satisfying

(3.2) ‖a∗a‖ = ‖a‖2 .
If A is a Banach algebra, condition (3.1) shows that A acts continuously on

itself by left translation. A Banach algebra need not be unital (have an identity),
but if it doesn’t, we can make A into an ideal of codimension 1 in a Banach algebra

with identity, Ã. As a vector space, Ã = A ⊕ C · 1, where 1 is a new element

which is an identity element for Ã. (Thus the multiplication rule in Ã is that

(a+λ · 1) · (b+µ · 1) = ab+µa+λb+λµ · 1.) In general, Ã may have many Banach
algebra norms compatible with the original norm on A, but one that always works
is ‖a+ λ · 1‖1 = |λ|+ ‖a‖, since

‖(a+ λ · 1) · (b+ µ · 1)‖1 = |λµ|+ ‖ab+ µa+ λb‖
≤ |λ| · |µ|+ |µ| ‖a‖+ |λ| ‖b‖+ ‖a‖ ‖b‖
= ‖a+ λ · 1‖1 ‖b+ µ · 1‖1 .

In any Banach algebra A, the spectrum of an element a is the set of λ ∈ C

such that a− λ · 1 is not invertible (in A if A is unital, and otherwise in Ã). This

25
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is always a compact non-empty subset of C, and always contains 0 if A does not
have a unit. The spectral radius of a is the radius of the smallest disk centered at 0
and containing the spectrum of a. This can be computed as limn→∞ ‖an‖1/n. This
fact, called the spectral radius formula, follows from the formula for the radius of
convergence of a power series and the fact that

spectral rad(a) = the smallest value of R such that

the series for (a− λ · 1)−1 converges for |λ| > R .

But if z = λ−1, then

(a− λ · 1)−1 = −z(1− za)−1 = z

∞∑

n=0

anzn,

which converges absolutely for |z| < limn→∞ ‖an‖−1/n.
In a C∗-algebra A, if a = a∗, or even if a and a∗ commute, the norm and spectral

radius of a coincide. Indeed, first consider the case where a = a∗; then (3.2) shows
‖a2‖ = ‖a‖2, and iterating, we get ‖a2n‖ = ‖a‖2n , so that limn→∞ ‖a2n‖1/2n = ‖a‖
and spectral rad(a) = ‖a‖ by the spectral radius formula. If a and a∗ commute,
then (a∗a)n = (an)∗an, and hence ‖an‖2 = ‖(a∗a)n‖. Thus

spectral rad(a)2 = spectral rad(a∗a) = ‖a∗a‖ = ‖a‖2 .
Since the definition of the spectrum is purely algebraic and doesn’t involve the norm,
it follows from this that the norm is determined by the algebraic structure (including
the ∗-operation). Thus any ∗-homomorphism (i.e., ∗-preserving homomorphism)
between C∗-algebras is norm non-increasing, and any injective ∗-homomorphism is
an isometry.

Another important fact about C∗-algebras is that if A is a nonunital C∗-alge-
bra, then we can put a norm on Ã, the algebra with identity adjoined, to make it a
C∗-algebra also. To prove this, first observe that because of (3.2), the action π of A
on itself by left multiplication is isometric (since ‖π(a)(a∗)‖ = ‖aa∗‖ = ‖a‖‖a∗‖).
Since the action extends to Ã in an obvious way, we renorm Ã by means of

‖a+ λ · 1‖ = ‖π(a+ λ · 1)‖ .
This gives a C∗ norm since if ε > 0,

‖π(a+ λ · 1)‖2 = sup
y∈A, ‖y‖=1

‖ay + λy‖2,

so there exists y ∈ A, ‖y‖ = 1 with

‖π(a+ λ · 1)‖2 ≤ ‖ay + λy‖2 + ε

= ‖(ay + λy)∗(ay + λy)‖+ ε

= ‖y∗(a+ λ · 1)∗(a+ λ · 1)y‖+ ε

≤ ‖(a+ λ · 1)∗(a+ λ · 1)y‖+ ε

≤ ‖π
(
(a+ λ · 1)∗(a+ λ · 1)

)
‖+ ε .

Proposition 3.1. In a C∗-algebra A, if a = a∗, then the spectrum of a lies
in R. If A is unital and if uu∗ = u∗u = 1, then the spectrum of u lies in T.
Furthermore, the following are equivalent:

(1) a = a∗ and the spectrum of a lies in [0, ∞).
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(2) a = b2 for some b = b∗.
(3) a = y∗y for some y ∈ A.

The proof of this proposition is a bit tricky and we refer the reader to [54] or
[129]. Elements a = a∗ are called self-adjoint . Every element is of the form a+ ib
with a, b self-adjoint. Elements u with uu∗ = u∗u = 1 (in a unital C∗-algebra)
are called unitary . The elements A+ with properties 1–3 above are called positive.
They span A as a vector space. Relevant for physics is that if A represents a
quantum mechanical system, then positive observables are represented by positive
elements. One has ϕ(a) ≥ 0 if a ∈ A+, for any state ϕ on A (linear functional of
norm 1 taking the value 1 at the identity, assuming A is unital).

Sometimes when a C∗-algebra A is nonunital, we will need to refer to the
multiplier algebra M(A) of A. This is the largest unital C∗-algebra containing A as
an essential ideal. (“Essential” means that nothing in M(A) except 0 annihilates
A.) This can be defined as

M(A) = {(l, r) | l, r : A→ A, l(xy) = l(x)y, r(xy) = xr(y), r(x)y = xl(y)} .
Clearly A →֒ M(A) as an essential 2-sided ideal via a 7→ (λ(a), ρ(a)), where λ(a)
and ρ(a) denote left and right multiplication by a. It is also clear that if A embeds
in an algebra B as a 2-sided ideal, then the map b 7→ (λ(b), ρ(b)), where λ(b) and
ρ(b) denote left and right multiplication by b on A, gives a map B →M(A) which
is injective if and only if A is an essential ideal in B. The fact that M(A) has the
natural structure of a C∗-algebra is proved for example in [129, §3.1.2].

3.1.2. Examples of C∗-Algebras.

Examples 3.2.

(1) A = Mn(C), ∗ = conjugate transpose, ‖a‖ = max|ξ|=1 |a ξ|. Here | · | is
the Euclidean norm on Cn.

(2) H a Hilbert space, A = L(H) (bounded linear operators on H),

〈a ξ, η〉 = 〈ξ, a∗η〉 , ‖a‖ = sup
‖ξ‖=1

‖a ξ‖ .

Case (1) can be identified with the special case where H is finite dimen-
sional.

(3) H as above, A = K(H) (compact linear operators1 on H). This algebra
does not have a unit unless H is finite dimensional. Its multiplier algebra
is L(H).

(4) X locally compact Hausdorff, A = C0(X) (continuous functions vanishing
at infinity). ‖f‖ = sup |f(x)|, ∗ = complex conjugation. This algebra has
a unit exactly when X is compact. The multiplier algebra of C0(X) is
Cb(X), the continuous bounded functions on X. The multiplier algebra
can also be identified with C(βX), the continuous functions on the Stone-
Čech compactification of X.

As we will see below, these examples are universal in a certain sense.

1A bounded operator is called compact if it takes bounded sets to pre-compact sets. For
operators on a Hilbert space, this is equivalent to being in the norm closure of the operators of

finite rank.
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3.1.3. Basic Theorems About C∗-Algebras.

Theorem 3.3 (Gelfand). Every commutative C∗-algebra A is isometrically ∗-
isomorphic to C0(X) for some locally compact Hausdorff space X. The X is unique
up to homeomorphism and obtained from A as the space of maximal (modular)
ideals.2

Theorem 3.4 (Gelfand-Naimark). Every C∗-algebra embeds ∗-isometrically
into L(H) (as a closed ∗-subalgebra) for some Hilbert space H. One can choose
H finite dimensional if and only if dimA is finite.

The proofs may be found in standard books on operator algebras, such as [54],
[129], or [91].

3.1.4. Morita Equivalence and Tensor Products. For many purposes,
the obvious equivalence relation on C∗-algebras (∗-isomorphism) is too strong, and
one needs something a bit weaker. The correct notion is often Morita equivalence,
a C∗-algebraic version (due to Rieffel [136, 137, 138]3) of an equivalence relation
from noncommutative ring theory. (There are now fine textbook-style treatments
of Rieffel’s theory in [103] and [135].) Two rings A and B are Morita equivalent if
their categories of left modules are equivalent, i.e., they have the “same” represen-
tation theory. Morita’s Theorem says that this is the case exactly when there is an
A-B bimodule AYB such that the equivalence is implemented by tensoring with Y
and the reverse equivalence is implemented by tensoring with the “dual” bimodule.
The C∗-algebraic version is similar, but one needs topological control in the form
of A- and B-valued inner products on Y satisfying certain nice relations.

3.1.5. Characterization of the Compact Operators. As hinted above,
the compact operators K(H) play a distinguished role in the theory of C∗-alge-
bras. We often write simply K when H is separable and infinite dimensional. The
following collects together (in more modern language) some basic facts which can
be found in standard books on C∗-algebras.

Theorem 3.5. For a C∗-algebra A, the following are equivalent:

(1) A is Morita equivalent to the scalars C.
(2) A ∼= K(H) for some Hilbert space H.

If A is separable, one can add:

(3) A has, up to unitary equivalence, a unique irreducible representation on a
Hilbert space.

3.1.6. C∗ Tensor Products. Suppose A and B are C∗-algebras. Their alge-
braic tensor product (over C) A⊙B is clearly a ∗-algebra with (a⊗ b)∗ = a∗ ⊗ b∗.
Often one wants to complete A⊙B to a C∗-algebra. This is not as simple a matter
as one might hope, as there are usually many different C∗-algebra norms on A⊙B
satisfying the obvious cross-norm condition ‖a ⊗ b‖ = ‖a‖ · ‖b‖. (The problem is
that the cross-norm condition determines the norm on elementary tensors but not
on linear combinations of elementary tensors.) To avoid dealing with this problem,
we will always use ⊗ to denote the spatial tensor product , which is the completion

2An ideal is modular when the quotient by this ideal is unital. This is only relevant when A
itself is non-unital, since if A has a unit, so does A/I for any proper ideal I.

3Rieffel used the term strong Morita equivalence, but at the slight risk of confusion with the

purely algebraic notion, we’ve simplified the terminology.
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of A⊙B for its obvious ∗-representation on H⊗̄H′, where H, H′ are Hilbert spaces
on which A, resp., B are faithfully represented, and ⊗̄ is the tensor product of
Hilbert spaces. (It’s a nontrivial result of Turumaru [163, 162] that A⊗B doesn’t
depend on the choices of the (faithful) representations of A and B.)

Aside from the spatial C∗ tensor product A⊗B, which comes from the minimal
C∗ cross-norm on A⊙B (this is a theorem of Takesaki [159]), there is also amaximal
tensor product A⊗max B, whose ∗-representations correspond to commuting pairs
of ∗-representations of A and B. Usually these two products are different, and
there may be many “intermediate” tensor products between the two. But there
is a unique C∗ cross-norm on A ⊙ B if either A or B is nuclear. Commutative
C∗-algebras, finite dimensional C∗-algebras, and K are nuclear; so are C∗-algebras
generated by representations of locally compact amenable groups. The class of
nuclear C∗-algebras is closed under extensions and inductive limits.

There are two alternate characterizations (found in [30]) of Morita equivalence
which are often useful.

Theorem 3.6 (Brown-Green-Rieffel). If A and B are C∗-algebras, then they
are Morita equivalent if and only if they both embed as opposite “full corners” of
another C∗-algebra C. A corner is a C∗ subalgebra of the form pCp, where p is a
self-adjoint idempotent in the multiplier algebra of C. It is full if CpC is dense in
C. The opposite corner to pCp is (1− p)C(1− p).

The terminology here is very suggestive; C can be viewed as an algebra of
matrices (

a x
y b

)
, a ∈ A, b ∈ B,

and A and B can be identified with matrices concentrated in the corners.

Theorem 3.7 (Brown-Green-Rieffel). If A and B are separable C∗-algebras,
then they are Morita equivalent if and only if A⊗K ∼= B ⊗K.

The equivalence relation that A ∼ B ⇔ A⊗K ∼= B⊗K is usually called “stable
isomorphism.” It sometimes seems more concrete than Morita equivalence, but it
has the one disadvantage that if A and B are stably isomorphic, there may not be
any distinguished isomorphism from A ⊗ K to B ⊗ K, whereas often in the same
situation there is a canonical choice of a Morita equivalence A-B-bimodule.

3.2. K-Theory of C∗-Algebras

This section is again going to be a very quick summary of a subject which is well
treated in textbooks, for example, [16], [167], and [49]. We will just present what
will be needed for applications later in this book, but the reader should consult one
of these references for more details.

3.2.1. K0 of Rings.
3.2.1.1. Projective Modules. Let A be a ring with unit. A finitely generated

projective A-module P is a direct summand in An for some n. (Here we will
take our modules to be left modules, but it doesn’t really matter; right modules
give exactly the same theory.) These modules P are especially nice; for example,
⊗A P and HomA(P, ) are exact functors (preserve exact sequences). One can

make isomorphism classes of finitely generated projective modules into an abelian
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monoid (abelian semigroup with a 0 element) ProjA under direct sum ⊕.4 This
is almost never a group since we have addition but not subtraction. But we can
convert ProjA into a group K0(A) by taking its group completion or Grothendieck
group.

3.2.1.2. K0 of Rings. More precisely, K0(A) consists of objects [P ]− [Q], where
P and Q are finitely generated projective A-modules, subject to the relations:

(1)

(3.3) [P ]− [Q] = [P ′]− [Q′] ⇔ P ⊕Q′ ⊕R ∼= P ′ ⊕Q⊕R for some R.

(Compare (2.2) in the definition of topological K-theory!)
(2) ([P ]− [Q]) + ([P ′]− [Q′]) = [P ⊕ P ′]− [Q⊕Q′].

When A is commutative, tensor product over A makes K0(A) into a commutative
ring with unit element [A].

There is a close connection between topological K-theory for spaces, defined
using vector bundles, and K-theory for rings. This comes from:

Theorem 3.8 (Serre-Swan). If X is a compact Hausdorff space and E is a
vector bundle over X, then the space Γ(E) of continuous sections of E is a finitely
generated projective C(X)-module. Conversely, every finitely generated projective
C(X)-module is the space of a sections of a vector bundle. Thus there is a natural
isomorphism between K(X) and K0(C(X)).

More precisely, E 7→ Γ(E) sets up an equivalence of categories between vector
bundles over X and finitely generated projective C(X)-modules.

3.2.1.3. K0 as a Functor. It is easy to see that A 7→ K0(A) is a covariant
functor from unital rings to abelian groups. We extend it to nonunital rings via

K0(A) = ker
(
q∗ : K0(Ã) → K0(Z) ∼= Z

)
.

Here Ã, which as an abelian group is A⊕Z ·1, is the result of adjoining a unit to A,

and q is the quotient map. If A is a C-algebra, we could just as well define Ã to be
A⊕ C · 1, as discussed back in section 3.1.1, and we’d get the same group K0(A).

It is easy to check that if X is a locally compact Hausdorff space and A =

C0(X), the functions on X vanishing at infinity, then Ã (with the second definition,
A⊕C · 1) can be identified with the continuous functions on X that tend to a limit
at infinity, or to the continuous functions on the one-point compactification X+. It
follows that K0(A) as defined above agrees with the K-theory of X with compact
supports, as defined back in Section 2.1.11.

An interesting observation, even if we are only interested in unital rings, is that
K0 is functorial under nonunital ring homomorphisms. There is one important
special case.

Proposition 3.9 (Morita Invariance). For any ring A, the (nonunital) inclu-

sion A →֒Mn(A) defined by a 7→
(
a 0
0 0

)
induces an isomorphism on K0.

4Let’s explain why finite generation is important. Suppose for example that A = C. Then
finitely generated projective modules are just finite-dimensional vector spaces, which are classified

by their dimensions, and ProjA ∼= N. But if instead we took modules which are countably
generated, we’d have another element ∞ with the property that x ⊕ ∞ = ∞ for any x. This is
“bad” since when we take the group completion, we end up with the trivial group. This observation

is often known as the “Eilenberg swindle.”
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Note that the nonunitality of the map is in fact crucial here, for indeed the
only unital ∗-homomorphism C → Mn(C) induces multiplication by n on K0, and
thus does not induce an isomorphism on K0.

3.2.2. Topological K-Theory.
3.2.2.1. K0 of Banach Algebras. Instead of looking at projective modules, it is

sometimes easier to look at idempotents. A finitely generated projective A-module
P is determined by an idempotent e = e2 ∈Mn(A) (projecting A

n onto P ).5

K-theory for Banach algebras has somewhat better properties than for general
rings. The reason has to do with the following:

Proposition 3.10. Suppose A is a Banach algebra and two idempotents e, f ∈
Mn(A) are sufficiently close. Then they are homotopic through idempotents, and
the associated projective A-modules Ane and Anf are isomorphic.

Proof. Suppose A is unital (we can always reduce to this case anyway). If e
and f are close, then x = 1 − e − f + 2ef will be close to 1 and thus invertible.
(Here 1 denotes the identity in Mn(A).) But

xf = (1− e− f + 2ef)f = (1− e)f − f + 2ef = ef = e(1− e− f + 2ef) = ex,

so xfx−1 = e. Furthermore, since x is close to 1, it can be joined to 1 by a path
of invertible elements xt with x0 = 1 and x1 = x. Then xtfx

−1
t is a homotopy of

idempotents from f to e. �

Corollary 3.11. On the category of Banach algebras, K0 is a homotopy func-
tor. That is, homotopic homomorphisms induce the same maps on K0.

3.2.2.2. K1 of Banach Algebras. The functor K0 has a companion functor,
called K1. More precisely, we will be working with topological K1, which is not
the same as the K1 in algebraic K-theory, though the two are related. For A a
unital Banach algebra, let GL(A) = lim−→GL(n,A), where GL(n,A) is the group of

invertible elements in Mn(A) and we embed GL(n,A) in GL(n + 1, A) via a 7→(
a 0
0 1

)
. We define K1(A) to be GL(A)/GL(A)0, the quotient of GL(A) by the

connected component of the identity. This is clearly a discrete group.

Proposition 3.12. If A is a unital Banach algebra, then

K1(A) = GL(A)/GL(A)0

is an abelian group.

Proof. We just need to show that if a, b ∈ GL(n,A), then the commutator
aba−1b−1 lies in GL(A)0. We use the fact that we can stabilize to GL(2n,A), and
observe that(

aba−1b−1 0
0 1

)
=

(
ab 0
0 b−1a−1

)(
a−1 0
0 a

)(
b−1 0
0 b

)
.

We claim each of these matrices is in the connected component of the identity. This
follows from the fact that for any invertible u,

(
u−1 0
0 1

)(
cos t sin t
− sin t cos t

)(
u 0
0 1

)(
cos t − sin t
sin t cos t

)

5Incidentally, this explains why projective left modules and projective right modules give the

same K-theory — both are determined by idempotent matrices.
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is a path inGL(2n,A) from

(
1 0
0 1

)
(when t = 0) to

(
u−1 0
0 u

)
(when t = π/2). �

It is now obvious that A 7→ K1(A) is a homotopy functor from unital Banach
algebras to abelian groups. Note that K1(C) = 0, since GL(n,C) is connected for
all n. As before, we extend K1 to nonunital algebras A by defining

K1(A) = K1(Ã) = ker
(
q∗ : K1(Ã) → K1(C) = 0

)
.

Here Ã is the Banach algebra with identity adjoined, as in 3.1.1.
3.2.2.3. The Exact Sequence Relating K1 and K0.

Theorem 3.13. Let A be a Banach algebra with a closed ideal I and quotient
A/I. Let i : I →֒ A be the inclusion, q : A→ A/I be the quotient map. Then there
is a natural exact sequence

K1(A)
q∗−→ K1(A/I)

∂−→ K0(I)
i∗−→ K0(A)

q∗−→ K0(A/I) .

We will omit the proof, which is somewhat tedious, though not especially dif-
ficult, but will at least mention the idea behind the construction of the boundary

map K1(A/I)
∂−→ K0(I). We may suppose A is unital and we have an invertible

matrix ȧ ∈ GLn(A/I) representing a class in K1(A/I). The “dot” notation here
means this is the reduction mod I of a matrix a ∈Mn(A), but the key point is that

the matrix a need not be invertible. However, if we look at

(
ȧ 0
0 ȧ−1

)
, then by

the proof of Proposition 3.12, this lies in the connected component of the identity
in GL(2n,A/I), hence is a product of exponentials, so we can lift this to a ma-

trix u =

(
a b
c d

)
∈ GL(2n,A). The matrix u reduces mod I to

(
ȧ 0
0 ȧ−1

)
, hence

commutes modulo I with

(
1 0
0 0

)
. So the formal difference

[
u

(
1 0
0 0

)
u−1

]
−
[(

1 0
0 0

)]

lies in K0(I) and is defined to be ∂([ȧ]).
If A is a Banach algebra, C0(R

n, A), the algebra of A-valued functions on
Rn vanishing at infinity, is again a Banach algebra with pointwise addition and
multiplication and norm ‖f‖ = supx ‖f(x)‖. When A is a C∗-algebra, this coincides
with the C∗ tensor product C0(R

n) ⊗ A. An important consequence of Theorem
3.13 is the following:

Corollary 3.14. For any Banach algebra A, K1(A) ∼= K0(C0(R, A)).

Proof. Note that since K0 and K1 are homotopy functors, they must vanish
on contractible algebras (algebras A with a homotopy from the identity map A→ A
to the zero map A → 0 → A). Apply Theorem 3.13 to the extension of Banach
algebras

0 → C0((0, 1), A) → C0((0, 1], A) → A→ 0 .

This shows as desired that K1(A) ∼= K0(C0((0, 1), A)), since C0((0, 1], A) is con-
tractible and thus has vanishing K0 and K1. �
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3.2.2.4. Topological K-Theory of Banach Algebras. One can now extend K0 to
a sequence of homotopy functors on the category of Banach algebras. By Corollary
3.14, if A is a Banach algebra, K1(A) ∼= K0(C0(R, A)). So we define

Kn(A) = K0(C0(R
n, A))

for all n ∈ N, and this is consistent with our existing definitions. With this defini-
tion, the exact sequence of Theorem 3.13 now extends indefinitely to the left.

Theorem 3.15 (Bott Periodicity). On the category of Banach algebras, there
is a natural isomorphism of functors K0

∼= K2 which comes from a specific element
(the “Bott element”) in K0(C0(R

2)). Thus Kn(A) really only depends on n modulo
2.

When A is a commutative C∗-algebra, this is essentially Theorem 2.6 all over
again. In fact, the most efficient way to prove Theorem 2.6 is probably to prove
Theorem 3.15, though there are also other proofs of Theorem 2.6 that don’t gener-
alize to the noncommutative case.

We can now define Kn(A) for n negative using the periodicity, and K∗ behaves
very much like a homology theory on Banach algebras. If we dualize to spaces by
letting A = C0(X) with X locally compact, A/I = C0(Y ) for Y closed in X, then
this becomes the long exact cohomology sequence in topological K-theory, since
X  C0(X) is contravariant.

3.2.2.5. Stability. Because of the fact that close idempotents in a Banach alge-
bra are equivalent, one can show that if B is a C∗ inductive limit of algebras Bn
(this is the completion of the algebraic inductive limit in the obvious C∗ norm),
then K0(B) = lim−→K0(Bn). (The key observation is that any idempotent in a ma-
trix algebra over B is close, hence equivalent, to an idempotent in a matrix algebra
over Bn for sufficiently large n.) Applying this with Bn = Mn(A) for some other

C∗-algebra A, with Bn embedded in Bn+1 by a 7→
(
a 0
0 0

)
, and observing that

lim−→Mn(A) = A⊗K, we deduce a topological form of Morita invariance:

Theorem 3.16 (Topological Morita Invariance). For any C∗-algebra A, the
(nonunital) inclusion A →֒ A ⊗ K defined by a 7→ a ⊗ e, e a rank-one self-adjoint
projection, induces an isomorphism on all topological K-groups.

Corollary 3.17. If separable C∗-algebras A and B are Morita equivalent,
then they have isomorphic topological K-groups.

Proof. This immediately follows from the theorem together with Theorem
3.7. �

Remark 3.18. In fact the conclusion of Corollary 3.17 is true without the
separability hypothesis, but one needs a different method of proof, using a Morita
equivalence bimodule to construct the isomorphism of K-groups directly.

3.3. Crossed Products

3.3.1. Group Actions on C∗-Algebras.

Definition 3.19. Let A be a C∗-algebra. We denote by AutA the group of ∗-
automorphisms of A (algebra automorphisms preserving the ∗-operation). This is a
topological group with the topology of pointwise convergence. (When A = C0(X),
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AutA is the group of homeomorphisms of X with the compact-open topology.) If
G is a locally compact group, an action of G on A or C∗ dynamical system is a
continuous homomorphism α : G→ AutA.

Note: While one can also consider the norm topology on AutA, it is usually
too strong to be useful. For example, the left translation action of G on A = C0(G)
is usually not continuous for the norm topology on AutA. But this action is
continuous for the topology of pointwise convergence. Let α : G→ A be an action
of a locally compact group on a C∗-algebra A. A covariant pair of representations
of (A,G) consists of the following:

(1) a Hilbert space H,
(2) a strongly continuous unitary representation U of G on H, meaning that

g 7→ U(g) gives a homomorphism from G to the group of unitaries on H,
and for any ξ ∈ H, the map g 7→ U(g)ξ is continuous G→ H,

(3) a ∗-homomorphism ϕ : A→ L(H) satisfying

U(g)ϕ(a)U(g)∗ = ϕ(αg(a)), g ∈ G, a ∈ A .

Examples 3.20.

(1) A = C, U a [strongly continuous] unitary representation of G. Here A acts
just by scalar multiplication, the action of G on A is trivial, and condition
(3) is automatic.

(2) More generally, if the action of G on A is trivial, a covariant pair is just a
commuting pair (of a unitary representation of G and a ∗-representation
of A) on the same Hilbert space.

(3) A = C0(G), G acting by left translation on A, U the left regular repre-
sentation of G on L2(G), ϕ the action on C0(G) on L2(G) by pointwise
multiplication. This is a covariant pair since

(
U(g)ϕ(a)U(g)∗f

)
(s) =

(
ϕ(a)U(g)∗f

)
(g−1s)

= a(g−1s)
(
U(g)∗f

)
(g−1s)

= a(g−1s)f(s)

=
(
ϕ(g · a)f

)
(s) .

(4) H a closed subgroup of G, A = C0(G/H), G acting by left translation on

A, U an “induced representation” U = IndGH ρ of G, that is, the represen-
tation of G by left translation on the space

H = {f : G→ V | f(gh) = ρ(h)−1f(g), ‖f‖ ∈ L2(G/H)}.
Here ρ is assumed to be a unitary representation ofH on V . For simplicity,
we’ve assumed G/H carries a G-invariant measure. (If this is not true,
some modular functions need to be inserted.) The action of A on H is
the obvious one by multiplication. This extra structure on U is called a
system of imprimitivity , and plays a key role in the Mackey Imprimitivity
Theorem.

3.3.2. Crossed Products. Given an action α : G → A of a locally compact
group on a C∗-algebra, there is a unique C∗-algebra whose ∗-representations are in
natural bijection with the covariant pairs of representations of (A,G). It is called
the crossed product and denoted A⋊αG or C∗(G,A, α). When G is discrete and A
is unital, A⋊αG is generated by a copy of A and unitary elements ug, g ∈ G, such
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that ug a u
∗
g = αg(a). It is the completion of the finite linear combinations

∑
g ug ag,

ag ∈ A, in the greatest C∗ norm. When G is not discrete or A is nonunital, one still
has a copy of A and unitary elements ug as above, but they live in the multiplier
algebra of the crossed product. The crossed product itself is generated by the
products ϕ · a, where ϕ ∈ Cc(G) (viewed as a “smeared out” sum

∫
ϕ(g)ug dg of

the elements ug) and a ∈ A. A detailed introduction to crossed products may be
found in [172].

Examples 3.21. The examples that follow correspond precisely to Examples
3.20.

(1) A = C, A⋊G is the (maximal) group C∗-algebra C∗(G) of G, the largest
C∗-algebra completion of the convolution algebra L1(G).

(2) More generally, if α is trivial, A ⋊α G is the (maximal) tensor product
C∗(G)⊗max A.

(3) If A = C0(G), with G acting by left translation, then we have a classic
result:

Theorem 3.22 (Stone-von Neumann-Mackey). If G acts on itself by
left translations, then C0(G)⋊G ∼= K(L2(G)).

(4) If A = C0(G/H), with G acting by left translation, C0(G/H)⋊G is Morita
equivalent to C∗(H), by Rieffel’s version of the Mackey Imprimitivity
Theorem.

3.3.3. Dual Actions. Suppose G is a locally compact abelian group. Its dual

group is Ĝ = Hom(G,T), the set of continuous group homomorphisms from G into
the circle group T. This acquires a locally compact topology via the usual compact-
open topology for maps, and a group structure via pointwise multiplication, so

that Ĝ is also a locally compact abelian group. There is an obvious pairing 〈 , 〉
between G and Ĝ, with values in T. Pontrjagin duality says that the dual of Ĝ is G

again, or more precisely, that the natural embedding of G into the dual of Ĝ is an
isomorphism. Incidentally, local compactness is crucial here. There are non-locally
compact metrizable abelian topological groups with no continuous homomorphisms
to T at all, so the “dual” of such a group is trivial and inadequate for recovering G
by dualizing again.

Examples 3.23.

(1) G = Z, Ĝ = T. Similarly, if G = Zn, Ĝ = Tn.
(2) Vector groups Rn are self-dual. However it is better to identify the Pon-

trjagin dual with the dual vector space, since this identification is natural
and not dependent on choices. (If V is a finite-dimensional vector space

over R and if V ∗ is its vector space dual, then we identify V ∗ with V̂ by
means of the exponential map. In other words, if λ ∈ V ∗, the correspond-
ing character V → T is v 7→ eiλ(v).)

If G as above acts on a C∗-algebra A, there is a dual action α̂ of Ĝ on A⋊G
which when G is discrete is given by α̂γ(ug a) = 〈γ, g〉ug a. (The action is isometric
since 〈γ, g〉 has absolute value 1.) In the general case, if ϕ ∈ Cc(G) and a ∈ A,
α̂γ(ϕ · a) = (γϕ) · a, i.e., we multiply ϕ pointwise by γ (viewed as a function on G)
and leave a unchanged.

The following result, known as the Takai Duality Theorem, generalizes the
Stone-von Neumann-Mackey Theorem.
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Theorem 3.24 (Takai [158], [172, §7.1]). Suppose α is an action of a locally
compact abelian group on a C∗-algebra A. Let α̂ be the dual action on the crossed
product. Then

(A⋊α G)⋊α̂ Ĝ ∼= A⊗K(L2(G)) .

Furthermore, the double dual action can be identified with α⊗Adλ, where

(Adλ)(g)(a) = λgaλ
∗
g,

λ the left regular representation.



CHAPTER 4

Continuous-Trace Algebras and Twisted K-Theory

4.1. Continuous-Trace Algebras and the Brauer Group

4.1.1. Continuous-Trace Algebras.
4.1.1.1. The Trace Function. We want to introduce a particularly nice class of

C∗-algebras, called algebras with continuous trace. Roughly speaking, these are
algebras that look something like C(X)⊗Mn(C) (in the unital case) or C0(X)⊗K
(in the nonunital case).

Definition 4.1. Let A be a C∗-algebra. The spectrum1 of A, denoted Â, is the
set of unitary equivalence classes of irreducible ∗-representations of A on Hilbert
spaces. This is a topological space with the Fell topology , defined by pointwise

convergence of matrix coefficients a 7→ 〈π(a) ξ, η〉. Note that Â is not necessarily
Hausdorff, and (for non-type I C∗-algebras) is not even necessarily a T0 space.

Given a ∈ A+, its trace function Â → [0, ∞] is defined by [π] 7→ Trπ(a).
(For a positive operator on a Hilbert space, the trace is the sum of the eigenvalues
(counted with multiplicities), if this makes sense and converges, or is ∞ if there is
any non-discrete spectrum or if the sum doesn’t converge. Note that Trπ(a) only
depends on the unitary equivalence class of π, since conjugating π by a unitary
operator doesn’t change the trace.) This function is lower semi-continuous, not
necessarily continuous.

4.1.1.2. Fell’s Condition. Fell characterized those C∗-algebras for which there
are lots of elements with finite and continuous trace function.

Theorem 4.2 (Fell [62]). Let A be a C∗-algebra. Then the following conditions
are equivalent:

(1) Elements a ∈ A+ with finite and continuous trace function are dense.

(2) Â is Hausdorff, and A has lots of local rank-one projections, in that for

every [π] ∈ Â, there is an element a ∈ A+ with σ(a) a rank-one self-adjoint
projection (in the Hilbert space of σ) for every [σ] in a neighborhood of [π]

in Â.

One cannot omit the requirement that Â be Hausdorff, since the algebra

A = {f ∈ C ([0, 1],M2(C)) | f(1) is a diagonal matrix}
has as spectrum the non-Hausdorff space (a line segment with “two
endpoints” on one side) and otherwise satisfies (2) but not (1). The maps π+ : f 7→
(1, 1) entry of f(1) and π− : f 7→ (2, 2) entry of f(1) are irreducible 1-dimensional

1The connection with the use of this term in Section 3.1.1 is that if A is unital and a ∈ A
commutes with a∗, then the spectrum of a in A is the same as the spectrum of the C∗-subalgebra

of A generated by a and 1.

37
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representations of A. The other irreducible representations are given by πt : f 7→
f(t), t < 1. The elements with continuous trace are not dense, since for f ∈ A, as
t→ 1−, Trπt(f) → Trπ+(f) +Trπ−(f), while πt converges to both π+ and π− in
the Fell topology, so that the trace function of f is not continuous if both of π±(f)
are non-zero.

4.1.1.3. The Theory of Dixmier-Douady. A C∗-algebra A satisfying the equiv-
alent conditions of Theorem 4.2 is called a C∗-algebra with continuous trace or a
continuous-trace algebra (sometimes we will use the abbreviation CT-algebra). The
structure of these algebras was investigated by Dixmier and Douady [55]. Detailed
expositions of their work can be found in [54, Ch. 4 and 10], in [135], and in [147].

Theorem 4.3 (Dixmier-Douady). Let X be a second-countable locally compact
Hausdorff space, and let A be a separable continuous-trace algebra with spectrum
X. Then A is isomorphic to the algebra Γ0(X,A) of sections vanishing at ∞ of a
locally trivial bundle A with fibers isomorphic to K, provided that either

(1) A is stable, i.e., A ∼= A⊗K, or
(2) X is finite dimensional and each irreducible ∗-representation of A is of

dimension ℵ0.

4.1.1.4. The Dixmier-Douady Class and Bundle Theory. Whether or not A is
locally trivial in the sense of Theorem 4.3, Dixmier and Douady showed that A has
a characteristic class δ(A) ∈ H3(X,Z). This class doesn’t change if we replace A
by A⊗K. One may explain this Dixmier-Douady class as follows:

Suppose for simplicity that A is locally trivial (otherwise replace A by A ⊗ K
and use Theorem 4.3) and comes from a bundle A. This bundle has fibers K and
structure group AutK ∼= PU(H) = U(H)/T, where dimH = ℵ0. But U(H) is
contractible for H infinite dimensional. So PU has the homotopy type BT, which
is a K(Z, 2) space2. And principal PU -bundles over X are classified by

[X,BPU ] = [X,K(Z, 3)] = H3(X,Z) .

In this way, we see that every stable CT-algebra defines a class in H3, and every
class in H3 comes from a stable CT-algebra.

4.1.1.5. Gerbes. There is an alternative approach to the theory of continuous-
trace algebras and the Dixmier-Douady class via the theory of gerbes , as discussed
in [122], [20], or [78]. The main advantage of this approach is that it meshes well
with the theory of theH-flux in string theory. Recall that we pointed out before that
this is always given by a class in H3(X,Z), where X is spacetime. This class is the
Dixmier-Douady class of a gerbe, which in turn determines a CT-algebra. A gerbe
is precisely what is needed to give a rigorous definition of the Wess-Zumino term
(1.3) in the string action, without vague references to “locally defined” differential
forms [66]. Since the theory of gerbes will not be needed for the rest of the book,
we have relegated further discussion to a “starred section,” Section 4.3.

4.1.2. The Brauer Group.

2This means a space with the homotopy type of a CW complex and with exactly one non-zero

homotopy group, namely π2
∼= Z. Such a space is unique up to homotopy equivalence.
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4.1.2.1. Review: The Brauer Group of a Field. Before we get to the next topic,
it’s convenient to review some classical algebra. Suppose F is a field (this time in
the sense of commutative algebra, not in the sense of physics!). By Wedderburn’s
Theorem, every finite dimensional central simple3 algebra over F is of the form
Mn(D), where D is a division algebra having F as its center. Two such algebras
are F -Morita equivalent if and only if the associated division algebras D are F -
isomorphic.

The Morita equivalence classes [A] of central simple algebras A over F form an
abelian group under the operation ⊗F , with F as identity element and [A◦] (A◦ the
same underlying vector space as A, but with the order of multiplication reversed) as
the inverse of [A]. (The point is that A⊗F A◦ ∼= EndF (A), which is isomorphic to a
matrix algebra over F and is thus Morita equivalent to F .) This group is called the
Brauer group BrF . It can be shown to be isomorphic to H2(Gal(F s/F ), (F s)×),
F s the separable closure of F . For purposes of relating this to what will come later,
it is better to think of this group as H2

ét(SpecF,Gm). The point (see [111]) is that
the étale open sets of SpecF correspond to finite Galois coverings L of F , on which
Gm takes the value L×, viewed as a module over Gal(L/F ).

4.1.2.2. The Brauer Group of a Commutative Ring. Similarly there is a notion
of Brauer group BrR when R is a commutative ring [10]. This time central simple
algebras are replaced by Azumaya algebras or central separable algebras, R-algebras
A with R as center for which A is finitely generated projective as a module over
A⊗R A◦. The R-Morita equivalence classes of these algebras again form a Brauer
group Br(R), with the group operation as tensor product over R and [A]−1 = [A◦].
This generalizes the Brauer group for fields.

4.1.2.3. The Grothendieck-Serre Theorem. The special case of BrR with R =
C(X) was studied by Grothendieck and Serre, who found an analogue of the Galois
cohomology computation of the Brauer group for a field.

Theorem 4.4 (Grothendieck-Serre). Let X be a connected finite CW-complex.
Then the Brauer group of C(X) can naturally be identified with the torsion subgroup
of H3(X,Z), and the Azumaya algebras over C(X) are all of the form Γ(X,A),
where A is a locally trivial bundle of algebras over X with fibersMn(C) and structure
group AutMn

∼= PGL(n,C).

For the proof, see [72] or [49, Theorem 9.13]. Even though this result at first
sight appears quite different from the result from fields, it is actually almost the
same. Indeed, consider the short exact sequence of sheaves

0 → Z
2πi−−→ C

exp−−→ C× → 0.

The sheaf C is fine, so it has vanishing higher cohomology. Thus the long exact
sequence in sheaf cohomology gives

0 = H2(X,C) → H2(X,C×) → H3(X,Z) → H2(X,C) = 0,

and so we can write H3(X,Z) as H2(X,C×), which looks a lot like H2
ét(SpecF,Gm)

in the case of the Brauer group of a field.

3“Central simple” means the algebra has no non-trivial two-sided ideals and has F as its

center.
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4.1.2.4. Green’s Topological Brauer Group. When X is a connected finite CW-
complex, the Azumaya algebras over C(X) are precisely the unital CT-algebras
with center C(X). Philip Green proposed taking a broader point of view in order
to account for the missing non-torsion classes in H3 and thus to get an even better
correspondence with the étale cohomology analogy: allowing X to be locally com-

pact and considering all CT-algebras A with spectrum Â ∼= X, viewed as algebras
over C0(X). If one then considers these algebras up to C0(X)-linear (topological)
Morita equivalence, they again form a Brauer group BrX with group operation
given by ⊗C0(X) (topological tensor product over C0(X)), and inversion given by
[A] 7→ [A◦]. More details may be found in [135, §6.1].

Theorem 4.5 (Green). Let X be a second-countable locally compact Hausdorff
space. Then the Dixmier-Douady class defines an isomorphism BrX ∼= H3(X,Z).
When X is a finite CW-complex, the Grothendieck-Serre Brauer group embeds as
the torsion subgroup.

Proof. We have already seen that the stable continuous-trace algebras over X
are classified by their Dixmier-Douady invariants, and that every class in H3(X,Z)
arises in this way. Furthermore, from Theorem 3.7, stable isomorphism and Morita
equivalence coincide for separable C∗-algebras, and it is easy to see that this fact
is true “over X” also. So H3(X,Z) classifies the CT-algebras over X up to C0(X)-
linear (topological) Morita equivalence. We just need to check that the group opera-
tion in the Brauer group corresponds to addition of Dixmier-Douady invariants, and
that CT (X,H)◦ ∼=X CT (X,−H). To prove this, think of CT (X,H) as Γ0(X,A),
where A is a bundle of algebras with fibers ∼= K. Then if CT (X,H ′) = Γ0(X,A′),

CT (X,H)⊗X CT (X,H ′) = Γ0(X,A⊗A′),

where ⊗ denotes the fiberwise tensor product of algebra bundles. The transition
functions for A⊗A′ are obtained by tensoring together the transition functions for
A and for A′, so one can see that the Dixmier-Douady class for A⊗A′ is the sum
of those for A and A′ separately. �

4.2. Twisted K-Theory

4.2.0.5. An Analogy: Cohomology with Local Coefficients. To explain the idea
of twisted K-theory, it helps to think of an analogous (but simpler) theory: co-
homology with local coefficients. (Čech) cohomology can be identified with the
sheaf cohomology of a constant sheaf of abelian groups. If we replace this by a
locally constant sheaf or local coefficient system, we get cohomology with local coef-
ficients. For example, an oriented compact n-manifold M satisfies Poincaré duality

Hi(M,Z)
∼=−→ Hn−i(M,Z). If M isn’t orientable, there is a canonical local coef-

ficient system Z that has fiber Hn(M,M r {x}) at x ∈ M , and we instead have

Poincaré duality with local coefficients Hi(M,Z)
∼=−→ Hn−i(M,Z).

4.2.0.6. Twisted K-Theory. In a similar way, if an n-manifold has a spinc struc-

ture, it satisfies Poincaré duality in K-theory, Ki(M)
∼=−→ Kn−i(M). If there is no

spinc structure, we need twisted K-theory. The simplest way to define this is, given a
classH ∈ H3(M,Z), to take theK-theory of a noncommutative C∗-algebra, namely
the stable continuous-trace algebra CT (M,H) with H as its Dixmier-Douady class.
Thus we define K−i(M,H) = Ki(CT (M,H)). (The idea of using Azumaya alge-
bras to define twisted K-theory goes back to Donovan and Karoubi [56], and the
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idea of using continuous-trace algebras is due to the author [139, 141]. For more
recent treatments of twisted K-theory, see [8, 9] and [95].)

Examples 4.6.

(1) M = SU(3)/SO(3), where SO(3) sits inside SU(3) as the real-valued
special unitary matrices. The Lie group SO(3) has SU(2) as a double
cover, and thus is topologically RP3. We have a long exact homotopy
sequence

· · · ∂−→ πn(SO(3)) → πn(SU(3)) → πn(SU(3)/SO(3))
∂−→ · · · ,

and since SU(3) is 2-connected and π1(SO(3)) ∼= Z/2 while π2(SO(3)) =
0, we see that π1(M) = 0 and π2(M) ∼= Z/2. By the Hurewicz Theorem
and Poincaré duality, H2(M,Z) ∼= H3(M,Z) ∼= Z/2, while H2(M,Z) ∼=
H3(M,Z) ∼= 0. The manifold M is non-spin (basically because the ad-
joint action SO(3) → SO(su(3)/so(3)) ∼= SO(5) doesn’t factor through
Spin(5)), and since its second Stiefel-Whitney class4 in H2(M,Z/2) can’t
be the reduction of an integral class (since H2(M,Z) = 0), it also does
not have a spinc structure. In fact, this is the simplest example of an
oriented manifold without a spinc structure. The Atiyah-Hirzebruch spec-
tral sequence degenerates at E2, since Sq3 acts trivially on H∗(M,Z), so
K0(M) ∼= Z and one has an exact sequence

0 → Z → K1(M) → Z/2 → 0,

but this is not enough information to determine whether K1(M) ∼= Z or
K1(M) ∼= Z⊕Z/2. For those who know about such things, one can resolve
this question using the Hodgkin spectral sequence

TorR(SU(3))
∗

(
R(SO(3)),Z

)
⇒ K∗(SU(3)/SO(3))

[79]. (This arises from the isomorphisms K∗(G/H) ∼= K∗
G(G/H × G),

K∗
G(G/H) ∼= R(H), and K∗

G(G)
∼= Z, discussed below in Section 5.1.1,

along with the “Künneth Theorem” in equivariant K-theory.) One finds
that R = R(SU(3)) ∼= Z[x, y], and R(SO(3)) can be identified with the
R-module R/(x− y), which has the projective resolution

0 → R
x−y−−−→ R→M → 0,

so the Tor groups are both isomorphic to Z and K1(M) ∼= Z. Similarly
one can show that K0(M) ∼= K1(M) ∼= Z.

The twistedK-theoryK∗(M,H) can also be computed by the Hodgkin
spectral sequence, this time as

Tor∗R(SU(3))

(
R̃(SO(3)),Z

)
⇒ K∗(SU(3)/SO(3), H),

with R̃(SO(3)) denoting the “genuine” representations of the double cover
SU(2) of SO(3), i.e., those that do not descend to SO(3). It turns out that
the result is basically the same as before, i.e., K∗(M,H) is torsion-free,
and one has a Poincaré duality isomorphism Keven(M,H) ∼= Kodd(M),
Kodd(M,H) ∼= Keven(M), implemented by the “twisted Dirac operator.”

4We discussed Chern classes in Chapter 2. The Stiefel-Whitney classes wj in (Z/2)-
cohomology are defined similarly for real vector bundles. Here we are talking about w2 of the

tangent bundle, which is the obstruction to a spin structure on an oriented manifold.
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(2) If H = 0, then CT (M, 0) = C0(M)⊗K, and K−i(M,H) = Ki(C0(M)⊗
K) ∼= Ki(C0(M)) ∼= K−i(M) by Morita invariance. So twisted K-theory
generalizes ordinary K-theory.

4.2.0.7. The Atiyah-Hirzebruch Spectral Sequence. Recall Theorem 2.7 about
how to compute K-theory from ordinary cohomology. Something quite similar is
true in the case of twisted K-theory K∗(X,H), H ∈ H3(X,Z), except that the
differentials in the spectral sequence now involve H as well. (See [9] for more
details.) The first non-zero differential is d3 : H

p(X,Z) → Hp+3(X,Z), which is
equal to the sum of the Steenrod operation Sq3 and cup product with H.

Example 4.7. X = S3, H = k 6= 0 (when we identify H3(S3) with Z). In this
case Sq3 = 0 but d3 : Z ∼= H0(X) → H3(X) ∼= Z is multiplication by k. So we get
K0(S3, H) = 0 and K1(S3, H) ∼= Z/k.

Example 4.8. The Atiyah-Hirzebruch spectral sequence can also be used to
compute the twisted K-theory in Example 4.6(1) above. The E2 term is the same
as for the untwisted K-theory, but now d3 sends the generator of H0(M,Z) to

H ∈ H3(M,Z), which has the effect of killing off E3,0
3 . So then it’s clear that

K∗(M,H) must be torsion-free.

4.2.0.8. Twisted K-Theory and String Theory. So what does any of this have
to do with string theory and string duality? Well, what we said before about brane
charges being classified by K-theory is not exactly right. This is true when the
H-flux is trivial, but not in general. By [65], in type II string theory, W3 of a
stable D-brane Y (this is a characteristic class of Y taking values in the 2-torsion
subgroup of H3(Y,Z)) must match the restriction of the H-flux. So if this is non-
zero, the D-branes do not usually have spinc structures and thus do not define
classes in topological K-homology, in the way we discussed earlier (see section
2.3.1). However, they define classes in twisted K-homology. We can also dualize by
Poincaré duality, since the spacetime manifold is still a spinc manifold. In general
type II string theory, the brane changes take values in K∗(X,H), the Ramond-
Ramond charges in the even group in type IIB and in the odd group in type IIA
[173].5

4.3. ✰ The Theory of Gerbes

In this section, we give a brief introduction to gerbes for the interested reader.
Anyone who wants to learn more should first read Hitchin’s concise introduction,
[78], and then consult the references quoted there, especially Brylinski’s book [31].

Roughly speaking, just as a line bundle is a geometric object giving rise to a
class in H2 (the Chern class c1, or in terms of Chern-Weil theory, the de Rham
class of the curvature form of a connection on the bundle), so a gerbe is a geometric
object giving rise to a class in H3. Thus it is natural to try to connect gerbes with
continuous-trace algebras and the Dixmier-Douady class.

There are two main theories of gerbes, which are closely related but not exactly
the same. One is the theory of Giraud [67, §III.2] and Brylinski [31], based on
categorical language. In this theory, a gerbe is really a sheaf of groupoids. The
French word gerbe is defined by Larousse as “ensemble de choses en faisceau,” a

5Because of differences in sign conventions, some authors use K∗(X,−H). The groups

K∗(X,H) and K∗(X,−H) are isomorphic (as abstract groups).
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collection of things (e.g., flowers) in a bundle (faisceau), but the word has been
chosen here since the French word faisceau is used for the mathematical concept
of “sheaf.” Since all of this seems rather abstract, we will instead discuss Murray’s
theory of “bundle gerbes” [122, 123], which are both more concrete and a little
closer to what is needed for applications to physics. Since we will not discuss
Brylinksi-style gerbes here (although they will reappear implicitly in Section 10.3.3),
we will generally abbreviate “bundle gerbe” to “gerbe.” It will also be convenient
to switch from discussion of principal C×-bundles (which are what Murray uses in
[122]) to complex line bundles, which were considered in Chapter 2.

4.3.1. Bundle Gerbes.

Definition 4.9 (Murray). A bundle gerbe over M , or a simply a gerbe over
M , is given by a pair (L, Y ), where π : Y ։ M is a surjective map with local
sections (often a locally trivial fiber bundle), and L is a complex line bundle over
Y [2], where Y [2] = {(y1, y2) | yj ∈ Y, π(y1) = π(y2)}. There is one extra piece
of structure, which we’ve suppressed in the notation, namely a “product” on L.
This is an isomorphism µ of line bundles over Y [3] = {(y1, y2, y3) | yj ∈ Y, π(y1) =
π(y2) = π(y3)},

µ : π∗
12(L)⊗ π∗

23(L)
∼=−→ π∗

12(L),

where πjk : Y
[3] → Y [2] is the projection using coordinates j and k. The multipli-

cation µ is required to satisfy the associative law

µ ◦ (µ⊗ 1) = µ ◦ (1⊗ µ)

on Y [4]. (Here Y [n] = {(y1, y2, . . . , yn) | yj ∈ Y, π(y1) = π(y2) = · · · = π(yn)} for
any n.)

One can get an (uninteresting) example of a bundle gerbe by starting with a
line bundle K over Y and letting

L = Hom(π∗
1(K), π∗

2(K)) = π∗
1

(
K−1

)
⊗ π∗

2(K),

with the obvious product

Hom(π∗
1(K), π∗

2(K))⊗Hom(π∗
2(K), π∗

3(K)) → Hom(π∗
1(K), π∗

3(K)).

Such a gerbe is called trivial.

Definition 4.10. Given a bundle gerbe (L, Y ) over M as in Definition 4.9,
one can define a class in H3(M,Z), called its Dixmier-Douady class , as follows.
Choose an open covering {Uα} of M , such that π : Y → M has a section sα over
each Uα. Let Uα,β = Uα ∩ Uβ ; then (sα, sβ) : Uα,β → Y [2]. Define a line bundle
Lα,β = (sα, sβ)

∗(L) over Uα,β for each pair of indices α and β. Then the product µ

in Definition 4.9 gives an isomorphism Lα,β ⊗Lβ,γ ⊗Lγ,α
∼=−→ Lα,α ∼= C (the trivial

line bundle) over Uα,β,γ , and thus is multiplication by a function gα,β,γ : Uα,β,γ →
C×. (Note that we don’t have to specify which two factors we multiply first because
of the associative rule for µ.) It is easy to check that {gα,β,γ} is a Čech 2-cocycle
and thus defines a class in H2(M,C×) ∼= H3(M,Z), and that the class obtained is
independent of all choices made. Murray also shows that vanishing of the Dixmier-
Douady class is precisely the condition for the bundle gerbe to be trivial.
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Example 4.11. Bundle gerbes arise when one considers the case of a princi-
pal G-bundle π : Y ։ M , G some topological group, and a central extension of
topological groups

1 → T
ι−→ G̃

q−→ G→ 1.

Then the bundle Y over M may or may not lift to a principal G̃-bundle over M .

For example, if G = SO(n) = Spin(n)/{±1} and G̃ = Spinc(n) = T×{±1} Spin(n),
and if Y is the oriented frame bundle of an oriented Riemannian manifold M , then

a lifting of this bundle to a principal G̃-bundle over M is a spinc structure on M
compatible with the orientation, which may not exist at all, or may not be unique
if it does exist.

Out of this data one can construct a bundle gerbe in a canonical way. We let
P → Y [2] be defined by

P(x,y) = {h ∈ G̃ | x · q(h) = y} ,

with multiplication defined by the product in G̃. (For this to make sense, we use
the fact that T = q−1(1) is central.) This is a principal T-bundle over Y [2] and we
let L = P ×T C be the associated line bundle. This bundle gerbe is trivial exactly

when a bundle lifting to a principal G̃-bundle exists; in fact, a lifting of the bundle
gives rise to a trivialization of the gerbe.

Example 4.12 (The gerbe of a continuous-trace algebra). Let X be a second-
countable locally compact Hausdorff space, and let δ ∈ H3(X,Z). We can think of δ
as a homotopy class of a map X → BPU(H), H an infinite-dimensional separable
Hilbert space, and let Y be the associated principal PU -bundle over X. Now
consider the central extension of groups

1 → T → U(H) → PU(H) → 1.

Since U(H) is contractible, every principal U(H)-bundle over X is trivial. So if the
PU(H)-bundle Y over X lifts to a principal U(H)-bundle over X, that means Y is
a trivial bundle, which means δ = 0. On the other hand, as explained in Example
4.11, there is a “lifting bundle gerbe” associated to this situation, which is trivial
exactly when the lifting exists, or in other words, exactly when δ = 0. In fact, one
can trace through the definitions and check that the Dixmier-Douady class of the
gerbe is the same as for the continuous-trace algebra CT (X, δ).

4.3.2. Connections and Curvature. Let’s start by reviewing an analogous
situation. Suppose L is a line bundle over X. This line bundle is classified (up
to isomorphism) by a characteristic class c1(L) ∈ H2(X,Z). We can choose a
connection ∇ on L (not at all unique), and the curvature form of this connection
(divided by −2πi) is a representative for a de Rham class which is precisely the
image of c1(L) under the map H2(X,Z) → H2(X,R).

A similar situation occurs with bundle gerbes over X. Two gerbes are said
to be stably isomorphic if they become isomorphic after tensoring both of them
with trivial bundle gerbes. Then a gerbe is classified up to stable isomorphism
[124, Proposition 3.2] precisely by its Dixmier-Douady class δ ∈ H3(X,Z). There
is a notion of a connection on the gerbe, as well as of the curvature form of the
connection, and the de Rham class of the curvature is equal to the image of δ under
the map H3(X,Z) → H3(X,R).
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Definition 4.13. A gerbe connection on a bundle gerbe (L, Y ) overM is given
by a hermitian metric and compatible hermitian connection ∇ on the line bundle
L which are also compatible with the multiplication map µ, i.e., such that µ sends
the induced connection on π∗

12(L) ⊗ π∗
23(L) to π∗

13(∇). Murray [122] shows that
such connections always exist. He also observes that if π1, π2 : Y

[2] → Y are the
two obvious projections and ω is a differential form on Y with π∗

1ω = π∗
2ω, then

ω = π∗(ν) for a unique form ν on the base space M . Similarly, if ω is a differential
form on Y [2] and π∗

12(ω)− π∗
13(ω) + π∗

23(ω) = 0, then ω = π∗
1ν − π∗

2ν for some form
ν on Y , this time unique only up to the pull-back of a form on M .

We use these observations the following way. Consider the curvature 2-form F
of a gerbe connection ∇ (since we are dealing with a line bundle, this is an ordinary
2-form on Y [2]). Since µ sends the induced connection on π∗

12(L)⊗π∗
23(L) to π

∗
13(∇),

π∗
12(F ) − π∗

13(F ) + π∗
23(F ) = 0, and F can always be written in the special form

π∗
1B − π∗

2B. The 2-form B on Y is called the curving form. (It is not necessarily
unique, but we assume a specific choice has been made.) Since dF = 0 on Y [2], we
have π∗

1dB = π∗
2dB, which now means that dB = π∗H for some (uniquely defined)

closed 3-form H on M . Murray calls 1
2πiH the Dixmier-Douady form of the gerbe

with connection, and shows that its de Rham class is the image of the Dixmier-
Douady class of the gerbe under the map H3(X,Z) → H3(X,R). In particular,
changing the connection on the gerbe can only change H by an exact form.

4.3.3. Gerbes and the Wess-Zumino Term. Finally, we can explain how
gerbes can be used to give a mathematically more satisfying treatment of the Wess-
Zumino term in string theory. The ideas of this section are due to Murray [122],
Gawȩdzki and Reis [66], Carey, Mickelsson, and Murray [44], and Carey, Johnson,
and Murray [43], though by now many other authors have produced other variants
of the theory, each with its own advantages.

For simplicity we start with the case of the Wess-Zumino-Witten or WZW
model. Let’s take G to be a simply connected compact Lie group, e.g., SU(n) with
n ≥ 2. Since it’s well known that π2 of every Lie group is 0, G is 2-connected.
As a result, any map ϕ from a closed 2-manifold Σ into G extends to a map
ϕ̃ : M → G, where M is a 3-manifold with boundary (a “handlebody” like a solid
torus) with ∂M = Σ.6 We also assume that M and Σ are compatibly oriented. As
we explained in Section 1.2.0.5, the Wess-Zumino term in the action is a factor of
e
∫
M
ϕ̃∗(H), where H is a closed bi-invariant 3-form on G such that 1

2πiH is integral7,
and this is independent of the choice of M and ϕ̃, i.e., only depends on Σ and
ϕ. Formally, we can also write this term as e

∫
Σ
ϕ∗(B), except for the fact that the

B-field B is not globally defined on G. The advantage of the gerbe point of view is
that we can indeed make sense of this, but in the following way. We choose a bundle
gerbe (L, π : Y → G) over G with a gerbe connection ∇ having Dixmier-Douady
form H and curving B. Now B is a global 2-form, but on Y instead of G. Under
the map ϕ, the gerbe pulls back to a gerbe (L′, π′ : Y ′ → Σ) over Σ, where we have

6We need the fact that H2(G,Z) = 0, because if ϕ mapped [Σ] to a non-trivial homology
cycle in G, it could not bound the 3-chain defined by M .

7In the case of SU(n), a multiple of Tr
(

g−1dg
)3

will do.
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a commutative diagram

Y ′ ϕ̃ //

π′

��

Y

π

��
Σ

ϕ // G,

but since Σ is only 2-dimensional,

d
(
ϕ̃∗B

)
= ϕ̃∗(dB) = ϕ̃∗(π∗(H)

)
= (π′)∗

(
ϕ∗H

)
= 0.

In other words, ϕ̃∗B is closed and the gerbe (L′, Y ′) must be trivial, and there

is a line bundle L′′ over Y ′ such that L′ = π∗
1L

′′ ⊗ π∗
2L

′′−1
. Now we can choose

a hermitian connection ∇′′ on L′′ inducing ∇′, the gerbe connection on (L′, Y ′).
If F ′′ is its curvature 2-form, then ω = ϕ̃∗B − F ′′ is a closed 2-form on Y ′ with
π∗
1ω = π∗

2ω. Thus ω = (π′)∗ν for a unique (necessarily closed) 2-form ν on Σ. The
Wess-Zumino term of (Σ, ϕ) is defined to be

(4.1) WZ(Σ, ϕ) = e

∫
Σ
ν.

We claim this is independent of any choices and matches the original intuitive
notion of e

∫
Σ
ϕ∗(B). Indeed, first consider the rather trivial case where the B-field

is globally defined, so that the H-flux H is exact. In this case we don’t really need
gerbes at all, so we may take Y = G, π the identity map, L the trivial bundle
with the obvious connection, and B the curving form. (Don’t confuse curving with
curvature; the latter is π∗

1B − π∗
2B = B − B = 0 in this case.) In this situation,

ϕ̃ = ϕ, F ′′ = 0, and ν is simply ϕ∗B. So we recover the naive definition in this
case.

Finally, we need to check that we have a definition of the Wess-Zumino term
that is independent of all choices. Recall that the forms B on Y and H on G
are fixed once and for all. The choices we made were a trivialization of L′ (this
is the line bundle L′′ on Y ′ such that L′ is identified with π∗

1L
′′ ⊗ π∗

2L
′′−1

) and
the corresponding connection ∇′′. The bundle L′′ is not necessarily unique, but
if we make another choice (L′′′,∇′′′), then there is a line bundle K on Σ with a
connection ∇K such that L′′′ = L′′ ⊗ π∗K and ∇′′′ = ∇′′ ⊗ π∗∇K . Thus the form
ν above will change by the curvature FK of ∇K . It follows that WZ(Σ, ϕ), defined

as in (4.1), will change by multiplication by e
∫
Σ
FK . However, the curvature form of

a line bundle is always 2πi times an integral form (by Theorem 2.3), so this factor
is of the form e2πin for some integer n and thus is equal to 1. This completes the
proof that WZ(Σ, ϕ) is well defined.



CHAPTER 5

More on Crossed Products and Their K-Theory

5.1. A Categorical Framework

5.1.1. Equivariant K-Theory. For applications to come, we want to study
the K-theory of crossed products. The simplest example is the case where G is a
compact group (possibly even finite) acting on a C∗-algebra A. In this case there
is a classical invariant of the action, the equivariant K-theory KG

∗ (A).

Definition 5.1. Let G be a compact group and let α be an action of G on a
unital C∗-algebra A by automorphisms. We define the equivariant K-group KG

0 (A)
to be the Grothendieck group of equivalence classes of pairs (P, β), where P is a
finitely generated projective A-module and β is an action of G on P compatible
with the action α of G on A in the following sense: βg(a ·m) = αg(a) ·βg(m). Some
thought [16, Proposition 11.2.3] shows that this is equivalent to saying that (P, β)
is a G-equivariant summand in An = A⊗Cn, for the G-action on A⊗Cn given by
the tensor product of α with a linear representation of G on Cn, which we can take
to be unitary since G is compact.

When A = C(X) and G acts on X, we have

KG
0 (C(X)) ∼= K0

G(X),

the Grothendieck group of G-vector bundles E
p−→ X. (These are just like regular

vector bundles, except that there is an action of G on E, linear on fibers, making
p into a G-equivariant map.)

Just as in the case of ordinary (non-equivariant) K-theory, one can extend KG
0

to a Z/2-periodic homology theory KG
∗ on C∗-algebras with G-actions, whether or

not the algebras are unital.

We can now summarize some of the elementary properties of equivariant K-
theory. These are all rather easy; the only hard foundational theorem is the equi-
variant version of Bott periodicity. For more details, the best reference is still the
original paper of Segal [148]. The extension of Segal’s results to the noncommuta-
tive case may be found in [16, Chapter 11] or in [131].

• KG
0 (C) ∼= R(G), the representation ring of virtual (finite dimensional)

representations of G. In other words, R(G) consists of formal differ-
ences [V ] − [W ], where V and W are finite dimensional linear repre-
sentations of G, and the ring structure comes from the tensor product
of representations. The structure of this commutative ring is studied
in [149]. For example, R(Z/p) ∼= Z[t]/(tp − 1), R(T) ∼= Z[t, t−1] and
R(SU(n+ 1)) ∼= Z[t1, · · · , tn].

• KG
∗ (A) is always a module over R(G), for any A. The action comes from

the rather obvious formula [V, ρ] · [P, β] = [V ⊗ P, ρ ⊗ β], when V is a

47
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finite-dimensional C-vector space with a representation ρ of G on it, P is
a finitely generated projective A-module, and β is an action of G on P .

• IfG acts trivially on A, thenKG
∗ (A) ∼= R(G)⊗ZK∗(A) (as R(G)-modules).

• If G acts freely on X, K∗
G(X) ∼= K∗(X/G). (However, this does not

mean that the R(G)-module structure on K∗
G(X) has to factor through

the augmentation R(G)։ Z.)

• If H ⊂ G are compact groups, A is an H-algebra, and we form IndGH A as

in Section 5.3 below, then KG
∗ (IndGH A)

∼= KH
∗ (A). When A = C(X), X a

compactH-space, this is saying thatK∗
G(G×HX) ∼= K∗

H(X). For example
(take X = pt), K∗

G(G/H) ∼= K∗
H(pt) ∼= R(H). The relationship between

module structures is this. KH
∗ (A) is an R(H)-module, while KG

∗ (IndGH A)
is an R(G)-module. However, any finite-dimensional representation of
G can be viewed by restriction as a representation of H, so we have a
“forgetful map” R(G) → R(H). In this way, KH

∗ (A) can be regarded

as an R(G)-module, and the isomorphism KG
∗ (IndGH A)

∼= KH
∗ (A) is an

isomorphism of R(G)-modules.
• Again, if H ⊂ G are compact groups, and if A is an G-algebra, then we

can simply restrict the action to H and get a “forgetful map” KG
∗ (A) →

KH
∗ (A), compatible with the map of rings R(G) → R(H).

Equivariant K-theory turns out to be closely related to K-theory of crossed
products.

Theorem 5.2 (Green-Julg [90], [16, Theorem 11.7.1]). Let G be a compact
group, α an action of G on a C∗-algebra A. Then there is a natural isomorphism
KG

∗ (A) ∼= K∗(A⋊α G).

Sketch of Proof. Basically, the idea of the proof is that it is enough to
prove this for K0 with A unital. Then one needs to take a G-equivariant projective
A-module (P, β) as in Definition 5.1 and send its class in KG

0 (A) to a class in
K0(A⋊α G). When P = A⊗ V , V a finite dimensional G-module, V corresponds
to a projection p in C∗(G), and p(A ⋊α G)p is a unital subalgebra of the crossed
product in which p defines a K0 class. Thus p also defines a class in K0(A⋊α G),
and one sends [A ⊗ V ] 7→ [p]. Then one checks that if A ⊗ V splits as a direct
sum, each summand defines a subprojection of p and thus a class in K0(A ⋊α G).
Finally, to construct the map KG

∗ (A) → K∗(A ⋊α G), one can show fairly easily
[16, Proposition 11.2.3] that any pair (P, β) as in Definition 5.1 embeds as a direct
summand in some P = A ⊗ V as above. The surjectivity depends on the fact
that C∗(G), and hence also A ⋊α G, has an approximate identity consisting of
projections associated to finite-dimensional representations of G. This can also
be used to construct an inverse to the map KG

∗ (A) → K∗(A ⋊α G), so one has
injectivity as well. �

5.1.2. Questions About K-Theory of Crossed Products. We have seen
that when G is compact, the K-theory of the crossed product K∗(A ⋊ G) is the
same as the equivariant K-theory KG

∗ (A). But whether or not G is compact, there
are two natural questions one can ask about K-theory of crossed products:

Questions 5.3.

(1) Suppose αt, t ∈ [0, 1], is a homotopy of actions of G on A. Is K∗(A⋊αt
G)

independent of t?
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(2) Suppose A is K-contractible, i.e., K∗(A) = 0, and G acts on A. Does it
follow that K∗(A⋊G) = 0?

The two questions 5.3 turn out to be closely related (and always 2 ⇒ 1).

Proposition 5.4. An affirmative answer to Question 5.3 (2) for a certain
locally compact group G implies a positive answer to Question 5.3 (1) (for the same
group G).

Proof. Suppose we are in the situation of Question 5.3 (1). We start by
defining an action of G on C([0, 1], A) by αg(f)(t) = αt(g)(f(t)). We have an
extension of C∗-algebras

0 → C0((0, 1], A) → C([0, 1], A) → A→ 0.

Take the crossed products by A. We get an extension of C∗-algebras

0 → C0((0, 1], A)⋊α G→ C([0, 1], A)⋊α G→ A⋊α0
G→ 0.

Now apply the affirmative answer to Question 5.3 (2). Since C0((0, 1], A) is con-
tractible, the K-theory of C0((0, 1], A)⋊α G must vanish. So by the long exact K-
theory sequence and the Five-Lemma, the projection C([0, 1], A)⋊α G→ A⋊α0

G
induces an isomorphism on K-theory.

But we could have done exactly the same thing with the extension

0 → C0([0, 1), A) → C([0, 1], A) → A→ 0.

Thus the projection C([0, 1], A) ⋊α G → A⋊α1
G also induces an isomorphism on

K-theory. So Question (1) has an affirmative answer. �

We can now get an interesting counterexample to Questions 5.3 using a classic
theorem of Smith and its converse as proved by L. Jones:

Theorem 5.5 (P. Smith [153], L. Jones [88]; see also [161, §III.4]). Let p be
a prime. A finite CW complex F is the fixed set of a cellular action of Z/p on a
finite contractible CW complex X if and only if H∗(F,Z/p) ∼= H∗(pt,Z/p).

Choose F satisfying this condition but with H∗(F ) having q-torsion for some
other prime q. Then we can arrange also to have q-torsion in K∗(F ). (Just make
sure none of the differentials in the Atiyah-Hirzebruch spectral sequence can cancel
out the q-torsion. This is possible since as q increases, q-torsion only shows up
in higher and higher differentials.) Thus K∗(C0(F r pt)) has nontrivial q-torsion.
Note that C0(X r pt) is contractible. We need one more ingredient:

Theorem 5.6 (Segal [149, 148]). Let G be a compact abelian group and let p
be a prime ideal of R(G). Then p has a “support,” a topologically cyclic subgroup H
of G determined up to conjugacy, minimal with the property that p lies in the image
of SpecR(H) in SpecR(G), and if X is a locally compact G-space, the restriction
map K∗

G(X) → K∗
G(X

H) is an isomorphism after localization at p.

Lemma 5.7. Question 5.3 (2) has a negative answer for G = Z/p, p a prime.

Proof. We apply Segal’s Localization Theorem, Theorem 5.6, together with
the theorem of Lowell Jones, Theorem 5.5, in the case G = Z/p, R(G) = Z[t]/(tp−
1). Fix a prime q 6= p and let p = (q). Then R(G)/p ∼= Fq[t]/(t

p − 1) is a direct
sum of finite fields of characteristic q and p is supported on all of G = Z/p, since
the only other possibility would be that p lies in the image of SpecR({1}) = SpecZ
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in SpecR(G), which is evidently not the case, since p does not contain the kernel
(t−1) of the augmentation map R(G)։ Z. Also note that R(G)p = Z(q)[t]/(t

p−1).
Choose a G-space X ⊃ F as in Theorem 5.5, and choose a basepoint x ∈ F . Then
the restriction map

KG
∗ (C0(X r {x})) = K∗

G(X,x)p → K∗
G(F, x)p = K∗(F, x)⊗Z R(G)p

is an isomorphism onto a nonzero group. Thus A = C0(Xr{x}) is contractible but
K∗(A⋊G) 6= 0, so we have a negative answer to Question 5.3 (2) for G = Z/p. �

We can now “induce” this result to arbitrary groups with torsion.

Theorem 5.8. Question 5.3 (2) has a negative answer for any locally compact
group G containing nontrivial torsion.

Proof. If G contains nontrivial torsion, then there is an embedding of Z/p in
G as a closed subgroup for some prime p. Let (X,x) be a pointed Z/p-space as in
the proof of Lemma 5.7, and let (Y,A) = G×Z/p (X, {x}). This is a G-space pair,
and if G is compact, K∗

G(Y,A)
∼= K∗

Z/p(X, {x}) 6= 0. On the other hand, since X

is contractible, the inclusion of {x} into X is a homotopy equivalence, and then
the inclusion of A into Y is a homotopy equivalence. (Both fiber over G/(Z/p)
and the fibers are homotopy equivalent.) So K∗(Y,A) = 0. If G is compact, let
B = C0(Y r A) and we see that B is K-contractible while K∗(B ⋊G) 6= 0 by the
Green-Julg Theorem, Theorem 5.2. If G is noncompact, we substitute Theorem
5.11 below in place of Theorem 5.2, and the same argument goes through. �

In fact, with somewhat more care, we can also use the construction of L. Jones
to get a negative answer to Question 5.3 (1) as well. (Other constructions were
given many years ago by N. C. Phillips, using different ideas. A fairly elementary
construction using actions on a UHF algebra, a noncommutative C∗-algebra whose
K-theory is not finitely generated, is in [131, Example 3.3]. A slightly more com-
plicated example, using actions of a finite cyclic group on S5, was suggested by G.
Segal and is given in [131, Example 3.5].) Here is a sketch. Jones [88] even shows
that we can choose F as before so that there is an action α of G = Z/p on a disk
Dn (n sufficiently large compared the dimension of F ) having F as fixed set and
which restricts to a free action on the boundary ∂Dn = Sn−1. Now construct a
homotopy αt of actions of G = Z/p on the disk Dn as follows. For 0 ≤ t ≤ 1,
g ∈ G, and z ∈ Dn, let

αt(g)(z) =





0, t = 0 and z = 0,

t · α(g)
(
z
t

)
, 0 < t ≤ 1 and |z| ≤ t,

|z| · α(g)
(
z
|z|

)
, |z| > t.

(In other words, we rescale α down to the subdisk of radius t around 0, and then
extend radially outside the subdisk. Eventually, at t = 0, we just have the cone on
the restriction of α to Sn−1.) This is now a homotopy from the action α1 = α with
F as fixed set to an action α0 with {0} as fixed set. We saw above that K∗

G,α(D
n)p

is not isomorphic to K∗
G,α0

(Dn)p = K∗
G,α0

(pt)p = R(G)p because it has nontrivial

q-torsion, so we have a negative answer to Question 5.3 (1).
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5.1.3. The Baum-Connes Conjecture. The questions 5.3 we have been
discussing are actually related to a deep mathematical question, the Baum-Connes
Conjecture.

Theorem 5.9 (Meyer-Nest [110] or [49, §5.3 and §13.1.2]). Let G be a second-
countable locally compact amenable group with no nontrivial compact subgroups.
Then the following are equivalent:

(1) For all separable G-C∗-algebras A, K∗(A) = 0 implies K∗(A⋊G) = 0.
(2) The “Baum-Connes Conjecture with coefficients” (a conjectural way of

computing K∗(A⋊G)) holds for G.

Because of Theorem 5.8 above, condition (1) does not hold if G has torsion
(we’ll see another example with G = T later), which is why we have only stated
this theorem when G has no nontrivial compact subgroups. It is possible to drop
this condition, but then we need to replace the condition K∗(A) = 0 in (1) by the
condition that KH

∗ (A) = 0 for all compact subgroups H of G. The theorem is also
valid in the case where G is non-amenable, but then one needs to define the reduced
crossed product A⋊r G and use this instead of A⋊G.

5.2. Connes’ Thom Isomorphism

The simplest example where “Baum-Connes with coefficients” holds is the case
of G = R. This is also the case we will need for applications to T-duality in string
theory. We will first state the theorem, due to Connes, and then discuss the idea
of the proof.

Theorem 5.10 (Connes [45]). Let α be an action of R on a C∗-algebra.
Then K∗(A ⋊α R) is independent of α (and thus agrees with K∗(A ⊗ C0(R)) ∼=
K∗+1(A), which is what we’d get if α were trivial). More precisely, there is a map
Φ: K0(A) → K1(A⋊αR), natural in (A,α), which induces an isomorphism (called
Connes’ Thom isomorphism, by analogy with the Thom isomorphism theorem for
vector bundles).

Sketch of Proof of Connes’ Theorem. Connes’ original idea for proving
this is quite simple. The key step is simply construction of a natural map Φ which
reduces to the usual isomorphism K0(C) → K1(C

∗(R)) ∼= K1(C0(R)). For if this
is the case, applying Φ twice gives a natural map K0(A) → K2((A⋊α R)⋊α̂ R) ∼=
K0(A) (by Bott Periodicity and Taki Duality, Theorems 3.15 and 3.24) which must
be the identity if the action of R on A is trivial.

Since we can adjoin a unit and use Morita invariance, Proposition 3.9, it’s
enough to take A unital and consider a class in K0(A) represented by a self-adjoint
projection e. If we can change e in its unitary equivalence class so that e is fixed
under α, then the map C → A : 1 7→ e is R-equivariant and induces a map C0(R) =
C⋊R → A⋊α R, which in turn sends the canonical generator of K1(C0(R)) to our
desired class Φ([e]) in K1(A⋊α R).

The problem of course is that we may not be able to choose e fixed under α. So
the trick is to modify the action up to exterior equivalence, which doesn’t change
the K-theory of the crossed product, so as to make e fixed under the new action.

Two actions α and α′ of G on A are said to be exterior equivalent if they
differ by a unitary-valued cocycle. This means that there is a continuous map
G→ U(M(A)), M(A) the multiplier algebra of A, with ugh = ugαg(uh) such that
α′
g = Adug ◦ αg.
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Then there is an action β of G on M2(A) defined by the formula:

βg

(
a b
c d

)
=

(
αg(a) αg(b)u

∗
g

ugαg(c) ugαg(d)u
∗
g

)

This restricts to α on the upper-left corner and to α′ on the lower-right corner, so
A ⋊α G and A ⋊α′ G are opposite corners in M2(A) ⋊β G, and are thus Morita
equivalent. Hence their K-groups are canonically isomorphic.

To finish the proof, we just have to modify e up to K-theoretic equivalence and
the action α up to exterior equivalence to make e fixed under α′. First replace e
by a nearby projection so that e is smooth, i.e., t 7→ αt(e) is C∞. Since nearby
projections are equivalent in K-theory, this change is harmless.

Then smoothness of e means e lies in the domain of the derivation δ which is
the infinitesimal generator of α. We can write δ formally as i adH. Then replace
H by

H ′ = eHe+ (1− e)H(1− e) = H + i[δ(e), e],

which commutes with e. It is important to note that H ′ only differs from H by
a bounded perturbation. Define α′

t by Ad
(
eitH

′
)
, defined by expanding the series,

and check that it works. �

5.3. The Pimsner-Voiculescu Sequence

While we’re on the topic of the K-theory of crossed products, we want to
discuss crossed products by Z. An action α of Z on A is equivalent to a choice
of θ = α(1) ∈ AutA. From θ (or α) we can form an induced action of R on the
induced algebra, also called the mapping torus . Namely, let

Tθ = {f ∈ C(R, A) | f(x− 1) = θ−1(f(x))}.
Then R acts on Tθ by translations: αt(f)(x) = f(x− t). If θ is trivial, Tθ is simply
A⊗ C(T).

More generally, if G ⊃ H are locally compact groups and α is an action of H
on A, we have an action Indα of G by left translation on

IndGH A = {f ∈ C(G,A) | f(gh) = αh−1f(g), ‖f‖ ∈ C0(G/H)} .

Theorem 5.11 (Green [172, §4.3]). Let G ⊃ H be locally compact groups and

let α be an action of H on a C∗-algebra A. Then A⋊αH and IndGH A⋊IndαG are
Morita equivalent. In fact, at least if G and H are second-countable,

IndGH A⋊Indα G ∼= (A⋊α H)⊗K(L2(G/H)) .

Example 5.12. If A = C, this says C0(G/H) ⋊ G is Morita equivalent to
C∗(H), which is Rieffel’s form of Mackey’s Imprimitivity Theorem. If in addition
H = 1, this says C0(G)⋊G ∼= K(L2(G)), which is the Stone-von Neumann-Mackey
Theorem, Theorem 3.22.

Theorem 5.13 (Pimsner-Voiculescu [16, Ch. V, §10]). Let A be a C∗-algebra,
θ ∈ AutA. Then the K-groups of A⋊θ Z fit into a long exact sequence

· · · ∂−→ K∗(A)
1−θ∗−−−→ K∗(A) → K∗(A⋊θ Z)

∂−→ K∗−1(A)
1−θ∗−−−→ · · · .
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Proof. By the Green Imprimitivity Theorem and Morita invariance,

K∗(A⋊θ Z) ∼= K∗(Ind
R

Z A⋊Ind θ R).

Now apply Connes’ Thom Isomorphism Theorem and this becomes K∗−1(Ind
R

Z A).

But we have a short exact sequence 0 → C0(R) ⊗ A → IndRZ A → A → 0, and the
boundary map in the long exact K-theory sequence for this extension is 1− θ∗, so
the theorem follows. �

5.3.1. An Application: Irrational Rotation Algebras. As a typical ap-
plication of the Pimsner-Voiculescu Theorem, let A = C(T), let θ ∈ R, and let
α ∈ Aut(T) be rotation by 2πθ, i.e., multiplication by e2πiθ. Let Aθ = C(T)⋊α Z.
For obvious reasons, this is called a rotation algebra. It is also called a noncommu-
tative torus , since when θ = 0, Aθ ∼= C(T× T) = C(T 2). One can show that Aθ is
simple if and only if θ /∈ Q, in which case we call it an irrational rotation algebra.
Note that since C(T) is generated by a single unitary V (the identity map T → T),
Aθ is generated by two unitaries U and V , with commutation relation

UV U∗ = e2πiθV .

Since α is clearly isotopic to the identity, it acts trivially on K∗(T), so 1− α∗ = 0.
That means K0(Aθ) and K1(Aθ) are both isomorphic to K0(S1) ⊕K1(S1) = Z2.
More detailed examination of the proof of Connes’ Thom Isomorphism Theorem
shows that U and V generate K1(Aθ).

We’ll discuss the relevance of Aθ to string theory later, in Chapter 9.

5.3.2. Another Counterexample. We can also use the Pimsner-Voiculescu
Theorem, together with the Takai Duality Theorem, to construct an example of a
C∗-algebra A with an action α of T, such that K∗(A) = 0 but K∗(A ⋊α T) 6= 0.
To construct the example, start with the fermion algebra, an example of a UHF
algebra (which comes up in quantum field theory, incidentally!) B = lim−→M2n(C),

where we embed 2n × 2n matrices in 2n+1 × 2n+1 matrices by a 7→
(
a 0
0 a

)
. This

is not the same embedding as in the Morita invariance theorem, as the embedding
here is unital and induces multiplication by 2, not the identity, on K0

∼= Z. So

K0(B) = lim−→(Z
2−→ Z

2−→ Z
2−→ · · · ) = Z

[
1
2

]

and K1(B) = 0 (since K1

(
M2n(C)

)
= 0 for all n). Next, look at B ⊗K, which has

the same K-theory but no unit. This algebra has an automorphism θ with θ∗ = 2
on K0, which can be viewed as a “shift” on an infinite tensor product of copies of
M2(C) (see [48, §2]).

Now let A = (B⊗K)⋊θZ. (This turns out (loc. cit.) to be the algebra O2⊗K,
whereO2 is the “Cuntz algebra” [48] with generators S1 and S2 satisfying S

∗
j Sj = 1,

S1S
∗
1+S2S

∗
2 = 1.) We can compute theK-theory of A from the Pimsner-Voiculescu

sequence, which reduces to

Z
[
1
2

] 1−2 // Z
[
1
2

]
// K0(A)

��
K1(A)

OO

0oo 0.oo
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Since multiplication by 1 − 2 = −1 is an isomorphism, it follows that K0(A) =

K1(A) = 0. On the other hand, if α = θ̂, the dual action, then by Takai duality,
A⋊α T ∼= B ⊗K, which has nonzero K0.

Remark 5.14. Similar analysis using Takai duality (Theorem 3.24) and the
Pimsner-Voiculescu sequence (Theorem 5.13) gives a necessary and sufficient con-
dition for a T-algebra A to be a counterexample to Question 5.3 (2), or in other
words, to have K∗(A) = 0 and K∗(A ⋊ T) 6= 0. View KT

∗ (A) as a Z/2-graded
moduleM∗ over R(T) = Z[t, t−1]. Then one needs to haveM∗ 6= 0 but for multipli-
cation by t− 1 on M∗ to be an isomorphism. This can happen even if A = C0(X)
is commutative.

Remark 5.15. It is perhaps worth pointing out that, via Takai duality (The-
orem 3.24) and the Green-Julg Theorem (Theorem 5.2), the Pimsner-Voiculescu
sequence is equivalent to a special case of the Hodgkin spectral sequence, which
in turn is a form of Künneth Theorem for equivariant K-theory. If we dualize

from an action θ of Z on B to the dual action θ̂ of the compact group T on
A = B⋊θ Z, then the Pimsner-Voiculescu sequence relates K∗(A) ∼= K∗(B⋊θ Z) to

KT
∗ (A) ∼= K∗(A ⋊θ̂ T)

∼= K∗(B). But K∗(A) can be rewritten as KT
∗ (Ind

T

{1}A) ∼=
KT

∗ (C(T)⊗ A), which the Hodgkin spectral sequence [79] computes via a spectral
sequence

TorR(T)
p (KT

∗ (C(T)),K
T

∗ (A)) = TorZ[t,t
−1]

p (Z,KT

∗ (A)) ⇒ KT

∗ (C(T)⊗A) ∼= K∗(A).

(See [142] for the noncommutative version of the Hodgkin spectral sequence, which
is what is needed here if A is noncommutative.) The Tor groups here can be
computed from the free resolution

0 → Z[t, t−1]
t−1−−→ Z[t, t−1] → Z → 0.

Thus the E2 terms of the spectral sequence are

(5.1) TorZ[t,t
−1]

p (Z,KT

∗ (A)) =





coker(t− 1) on KT
∗ (A), p = 0,

ker(t− 1) on KT
∗ (A), p = 1,

0, p ≥ 2,

and since E2
p,q = 0 when p ≥ 2, the spectral sequence collapses, giving an exact

sequence

0 → Tor
Z[t,t−1]
0 (Z,KT

q (A)) → Kq(A) → Tor
Z[t,t−1]
1 (Z,KT

q−1(A)) → 0.

Substituting (5.1) for the Tor terms gives precisely the Pimsner-Voiculescu se-
quence, since t acts by θ∗.



CHAPTER 6

The Topology of T-Duality and the Bunke-Schick

Construction

6.1. Topological T-Duality

6.1.1. A Key Example.
6.1.1.1. Topology Change in T-Duality. We talked about the simplest case of

T-duality in Section 1.3.2.1. There, string theory on X = Z × T , where T = S1 is
a circle of radius R, corresponds to a dual string theory on X♯ = Z × T ♯, where

T ♯ is the dual circle with radius R̃ = α′

R . But what if X is fibered by circles, but
doesn’t split as a product?

The first example of this phenomenon was studied by Alvarez, Alvarez-Gaumé,
Barbón, and Lozano in [3]. (However, the reader should be cautioned that this
paper did not get all of the details exactly right.) Their discovery was generalized
10 years later by Bouwknegt, Evslin, and Mathai in [22, 23]. Let’s start with the
simplest example of a circle fibration, where X = S3, identified with SU(2), and T
(∼= S1) is a maximal torus. Then T acts freely on X (say by right translation) and
the quotient X/T is CP1 ∼= S2, with quotient map p : X → S2 the Hopf fibration.
Assume for simplicity that the B-field on X vanishes.

Let’s examine this case in more detail. We have X = S3 fibering over Z =
X/T = S2. Think of Z as the union of the two hemispheres Z± ∼= D2 intersecting
in the equator Z0 ∼= S1. The fibration is trivial over each hemisphere, so we have
p−1(Z±) ∼= D2 × S1, with p−1(Z0) ∼= S1 × S1. So the T-dual also looks like the
union of two copies of D2 × S1, joined along S1 × S1.

However, we have to be careful about the clutching that identifies the two
copies of S1 × S1. In the original Hopf fibration, the clutching function S1 → S1

winds once around, with the result that the fundamental group Z of the fiber T
dies in the total space X. But T-duality is supposed to interchange “winding” and
“momentum” quantum numbers. So X♯ has no winding and is just S2 × S1.

So what happened to the clutching function? It shows up in the H-flux of the
dual!

6.1.1.2. T-Duality with a B-field. To explain this, let’s go back to Buscher’s
derivation of T-duality for the sigma-model with maps x = (x1, x0) : Σ → X♯ =
Z × S1, but this time including the Wess-Zumino term. The action now has the
form

(6.1) S(x) =
1

4πα′

∫

Σ

(
‖∇x1‖2Z dvolΣ +

R2

α′ dx0 ∧ ∗dx0 + x∗B

)
.

When we dualize the S1, we have to be careful about the part of B that involves
this factor.
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In our situation, we are starting with a case where B± = η± × dvolS1 is a
2-form over Z± × S1, and dB± is a volume form on Z± × S1. Note that dB±, but
not B±, are supposed to agree on Z0 × S1.

In terms of the closed 1-form ω = dx0, the action becomes

S(ω) =
1

4πα′

∫

Σ

· · ·+ R2

α′ ω ∧ ∗ω + ω ∧ x∗1β,

where we’ve left out terms not involving x0 : Σ → S1, since they don’t change
under T-duality. As in Section 1.3.2.1, introduce the Lagrange multiplier µ to get

S(ω, µ) =
1

4πα′

∫

Σ

· · ·+ R2

α′ ω ∧ ∗ω + ω ∧ x∗1β + 2µdω,

which if we vary µ gives back the original action. But take the variation in ω
instead. We set δS = 0 and get what we had before but with an extra term:

2R2

α′ ∗ ω + x∗1β + 2dµ = 0.

So ∗ω = −α′

R2

(
dµ+ 1

2x
∗
1β
)
and ω = α′

R2 ∗
(
dµ+ 1

2x
∗
1β
)
. If η = dµ, substituting back

into S(ω, µ) gives

E′(η) =
−1

4πα′

∫

Σ

· · ·+ α′

R2

(
η +

1

2
x∗1β

)
∧ ∗
(
η +

1

2
x∗1β

)
,

which has the same form as E except that R↔ α′

R and η is shifted by 1
2x

∗
1β. Recall

β is not globally defined; the forms β± differ by a closed 1-form on Z0.
6.1.1.3. K-Theory Matching. Thus when we apply T-duality starting withX♯ =

Z × S1 and the H-flux a generator of H3(X♯), we see the closed 1-form associated
to the T-dual is shifted on one hemisphere relative to the another, the shifting as-
sociated to a generator of H1(Z0). That shows exactly that the clutching map of
the dual theory on X corresponds to the identity map S1 → S1, and so the dual
spacetime X is not S2 × S1 but S3.

We can also explain this in terms of matching of D-brane charges. If the sigma
models on X and X♯ are to give indistinguishable physics, the D-brane charges in
the two theories must live in isomorphic groups.

Thus we want to require K∗(X,H) ∼= K∗+1(X♯, H♯). The degree shift comes
from interchange of type IIA string theory with type IIB.

Example 6.1 (The Case of S2 × S1 and S3). Let’s check this principle of K-
theory matching in the case we’ve been considering, X = S3 fibered by the Hopf
fibration over Z = S2. TheH-flux onX is trivial, so D-brane changes lie inK∗(S3),
with no twisting. And K0(S3) ∼= K1(S3) ∼= Z.

On the T-dual side, we expect to find X♯ = S2 × S1, also fibered over S2, but
simply by projection onto the first factor. If the H-flux on X♯ were trivial, D-brane
changes would lie in K0(S2 × S1) and K1(S2 × S1), both of which are isomorphic
to Z2, which is too big.

On the other hand, we can compute K∗(S2 ×S1, H♯) for the class H♯ which is
k times a generator of H3 ∼= Z, using the Atiyah-Hirzebruch spectral sequence of
Section 4.2.0.7. The differential is

H0(S2 × S1)
k−→ H3(S2 × S1),

so when k = 1, K∗(S2 × S1, H♯) ∼= K∗(S3) ∼= Z for both ∗ = 0 and ∗ = 1.
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6.1.2. Axiomatics. This discussion suggests we should try to develop an ax-
iomatic treatment of the topological aspects of T-duality. Note that we are ignoring
many things, such as the underlying metric on spacetime and the auxiliary fields.

6.1.2.1. Axioms for Topological T-Duality.

(1) We have a suitable class of spacetimes X each equipped with a principal
S1-bundle X → Z. (X might be required to be a smooth connected
manifold.)

(2) For each X, we assume we are free to choose any H-flux H ∈ H3(X,Z).
(3) There is an involution (map of period 2, up to equivalence) (X,H) 7→

(X♯, H♯) keeping the base Z fixed.
(4) If X = Z×S1 and H = 0, then (X♯, H♯) is topologically again (Z×S1, 0).

If Z = S2 and (X,H) = (S3, 0), then (X♯, H♯) is as in 6.1.
(5) Naturality: If ϕ : Z1 → Z and if (X,H) is a pair over Z, then if we form

the pull-back diagram

X1
ϕ̂ //

��

X

��
Z1

ϕ // Z,

the T-dual of (X1, ϕ̂
∗(H)) (as a pair over Z1) is the pull-back of (X♯, H♯)

(computed over Z).
(6) K∗(X,H) ∼= K∗+1(X♯, H♯).

6.2. The Bunke-Schick Construction

Bunke and Schick [34] suggested constructing a theory satisfying these axioms
by means of a universal example. It is known that (for reasonable spaces Z, say
CW complexes) all principal S1-bundles X → Z come by pull-back from a diagram

X

��

// ES1 ≃ ∗

��
Z // BT ≃ K(Z, 2)

Here the map Z // K(Z, 2) is unique up to homotopy.

Similarly, every class H ∈ H3(X,Z) comes by pull-back from a canonical class

via a map X // K(Z, 3) unique up to homotopy.

Before we state the Bunke-Schick Theorem, let’s begin with a classical theorem
from algebraic topology, which will be needed later.

Theorem 6.2 (Gysin sequence). Let X
p−→ Z be a principal S1-bundle over a

path-connected base Z with Chern class c ∈ H2(Z,Z). Then the cohomology groups
of X and Z are related by a long exact Gysin sequence

(6.2) · · · → Hk(Z,Z)
∪c−→ Hk+2(Z,Z)

p∗−→ Hk+2(X,Z)

p!−→ Hk+1(Z,Z)
∪c−→ Hk+3(Z,Z) → · · · .
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Proof. Proofs can be found in most standard algebraic topology textbooks,
but we just indicate how this follows from the Serre spectral sequence

Hp(Z,Hq(S1,Z)) ⇒ Hp+q(X,Z),

for those familiar with it. The E2 terms of the spectral sequence look like

q

0

OO

0 0 0 · · ·

0 0 0 0 · · ·

H0(Z)
d

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
H1(Z)

d

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
H2(Z)

d

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚ H3(Z) · · ·

H0(Z) H1(Z) H2(Z) H3(Z) · · · // p ,

where d is the only nonzero differential, d2 : H
p(Z) → Hp+2(Z). Since Z and X

are path-connected, H0(Z,Z) ∼= Z and has a canonical generator, 1. The class
d(1) ∈ H2(Z) is c, and since d must have the derivation property, it has to be cup
product with c. Then we have exact sequences

0 → Ep,1∞ → Hp(Z,Z)
∪c−→ Hp+2(Z,Z) → Ep+2,0

∞ → 0

and

0 → Ep,0∞
p∗−→ Hp(X,Z) → Ep−1,1

∞ → 0,

from which (6.2) follows. The Gysin map p!, also sometimes called integration along
the fibers , since that’s what it amounts to in terms of de Rham cohomology, can
be defined to be the composite

Hk(X,Z) → Ek−1,1
∞ →֒ Hk−1(Z,Z). �

Theorem 6.3 (Bunke-Schick [34]). There is a classifying space R, unique up
to homotopy equivalence, with a fibration

(6.3) K(Z, 3) // R

��
K(Z, 2)×K(Z, 2),

and any (X,H) → Z as in the axioms of 6.1.2.1 comes by pull-back from

X

��

// E

��
Z // R,

with the horizontal maps unique up to homotopy and H pulled back from a canonical
class in H3(E,Z).

Furthermore, the k-invariant of the Postnikov tower (6.3) characterizing R is
the cup-product in

H4(K(Z, 2)×K(Z, 2),Z)
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of the two canonical classes in H2. The space E in the fibration

T // E

p

��
R

has the homotopy type of K(Z, 3)×K(Z, 2).

Proof. Consider the functor F : Z  {[(X,H)]} assigning to Z the set of all
equivalence classes of pairs (X,H) over it, where X → Z is a principal T-bundle
and H ∈ H3(X,Z). The functor F takes its values in “pointed sets,” since while
there is no obvious reason F (Z) must be a group, it certainly has a natural zero
element. One can show the functor F must be representable, in the sense that F (Z)
is the set of (based) homotopy classes of (based) maps Z+ → R,1 where R is some
(based) classifying space, by the “abstract nonsense” of the Brown Representability
Theorem [28, 29]. To get an idea of what R looks like, we can compute F (Sn) by
brute force. Clearly F (Sn) = 0 for n < 2 or for n > 3, since a circle bundle over
Sn can be nontrivial only if n = 2, and the total space of a circle bundle over Sn

can have nonzero H3 only if n = 2 or 3. Thus the only non-zero homotopy groups
of R can be π2 and π3. Since R is simply connected, there is no also difference
between based and unbased homotopy classes of maps Sn → R with n = 2 or 3.
Furthermore, π2(R) ∼= Z2, since a pair (X,H) over S2 is classified by two integers,
the Chern class of the bundle X → S2 and the value of H in H3(X,Z) ∼= Z.
Similarly, π3(R) ∼= Z, since any pair over S3 is of the form (S3 × S1, H × 1),
where H ∈ H3(S3,Z) ∼= Z. Since we now know all the homotopy groups of R,
Postnikov theory gives a fibration of the form (6.3). The problem is to compute
its k-invariant, the class in H4(K(Z, 2)×K(Z, 2),Z) by which (6.3) is pulled back
from the universal K(Z, 3) fibration

K(Z, 3) = ΩK(Z, 4) // pt

��
K(Z, 4).

Bunke and Schick also give another way of describing R explicitly, which is also
useful. Start with the free loop space

E = ΛK(Z, 3) = Map(S1,K(Z, 3)),

on which T acts by rotating the domain S1 ∼= T. The “Borel construction” gives a
homotopy fibration

(6.4) E
p // R = ET×T E

c

��
BT = K(Z, 2).

1Here Z+ is Z with a disjoint basepoint added; this is simply a device to get around the fact

that Z need not have any natural basepoint to begin with.
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We can think of c as the Chern class of a circle bundle

(6.5) T // E

p

��
R.

(Strictly speaking, this is only up to homotopy. To get a genuine circle bundle,
replace E by the homotopy-equivalent space E×ET with the diagonal action of T,
which is now free with R as quotient.) The free loop space comes with a fibration

ΩK(Z, 3) = K(Z, 2) // E = ΛK(Z, 3)

e

��
K(Z, 3),

where ΩK(Z, 3) is the based loop space and e is evaluation of loops at 1 ∈ S1.
Since e has a section, given by constant loops, E ≃ K(Z, 2)×K(Z, 3) and we have
a canonical class h ∈ H3(E,Z) (associated to the map e).

We just need to check that these specific E and R have the right proper-
ties. Given a pair (X,H) over a base Z, we have a map Z // BT classi-

fying X → Z. This comes from an T-equivariant map X
T // ET . We also

have a map X // K(Z, 3) classifying H. View this as an equivariant map

X
T // ΛK(Z, 3) and take the product to get a commuting diagram

X

��

// ET× E ≃ E

p

��
Z // R.

It’s easy to see that this identifies (X,H) → Z with the pull-back of (E, h)
p−→ R.

From the fibration

E
p // R

c

��
K(Z, 2)

and the fact that E ≃ K(Z, 2) ×K(Z, 3), we also see π2(R) ∼= Z2 and π3(R) ∼= Z,
which gives an independent check of the calculation we did previously.

Now let’s go back to the problem of computing the k-invariant. If the k-
invariant were trivial, we’d have R ≃ K(Z, 2) × K(Z, 2) × K(Z, 3), which would
be impossible, since it would imply the H-flux H on X is always the pull-back
of a class in H3(Z,Z), which need not be the case. Think of the Hopf fibration

S3 = X
p−→ Z = S2. H3(S3,Z) ∼= Z, but only the zero class is pulled back

from H3(S2,Z) = 0. In fact in this example, p! : H
3(X,Z) → H2(Z,Z) is an

isomorphism, and we see that the classes c1(p) and p!(H) are independent of one
another.

Now recall thatH∗(K(Z, 2)×K(Z, 2),Z) is a polynomial ring on two generators,
both of degree 2. We choose one of these generators to be u, the Chern class of
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(6.5), and let w be the canonical generator of H3(K(Z, 3),Z). The other generator
v of H2(R) will be specified shortly. The E2 term of the Serre spectral sequence of
(6.3) has the form

q

0

OO

0 0 0 0 · · ·

Zw

d

((PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
P 0 Zwu⊕ Zwv

d

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗ 0 · · ·

0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

Z 0 Zu⊕ Zv 0 Zu2 ⊕ Zuv ⊕ Zv2 · · · // p ,

where d sends w to the k-invariant. Since we know this is non-zero, d is injective
and H3(R,Z) = 0, while the rank of H4(R,Z) must be 2.

Now consider the Gysin sequence (6.2) applied to the circle bundle (6.5). This
has the form

0 = H3(R,Z)
p∗−→ H3(E,Z) = Zw

p!−→ H2(R,Z) = Zu⊕ Zv

·u−→ H4(R,Z)
p∗−→ H4(E,Z) = Zv2

p!−→ H3(R,Z) = 0.

This exact sequence shows that H4(R,Z) ∼= Z2 ⊕ (torsion). It also shows that
p!(w) ∈ H2(R,Z) is killed under multiplication by u. This class cannot be a

multiple of u, since for a pair (X
p′−→ Z,H), p′ is pulled back from p : E → R

and H is pulled back from w, and the example of the Hopf fibration showed that
c1(p

′) and p′!(H) have to be independent of one another. Furthermore, p!(w) must
be primitive (i.e., cannot be a nontrivial multiple of another class), for otherwise
p′!(H) would always be a nontrivial multiple of another class, which is not the case
in the Hopf fibration example when H is a generator of H3(S3,Z). In particular,
H4(R,Z) is torsion-free. So we let v = p!(w) and see that u and v are now free
generators for H2(R,Z).

Since uv dies in H4(R,Z), this means (up to a sign, which is a matter of
convention) that the k-invariant has to be uv, and the other generator of H4(R,Z)
is u2. �

Theorem 6.4 (Topological T-Duality). The space R has a homotopy automor-
phism of period 2, called topological T-duality, that comes from interchanging the
two copies of K(Z, 2) in (6.3). This gives an involution

[(X
p−→ Z,H)] 7→ [(X♯ p♯−→ Z,H♯)]

on the space of pairs (X,H) over a base Z, with the property that

(6.6) c1(p) = (p♯)!(H
♯) and c1(p

♯) = (p)!(H).
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Proof. Because of the fibration (6.3) and the fact that its k-invariant uv is
symmetric in the two factors, the “flip” automorphism ♯ interchanging the two
factors of K(Z, 2) × K(Z, 2) extends to a homotopy automorphism ♯ of R of pe-
riod 2, and thus to an involutive natural transformation from the functor F : Z  
{[(X,H)]} to itself. It remains to verify the stated relationship (6.6) between char-
acteristic classes involving the Gysin map.

We saw from the proof of Theorem 6.3 that the two generators of H2(R,Z)
can be taken to be u = c1(p) and v = p!(w), where w is the canonical generator of
H3(E,Z) and p is as in (6.5). These are interchanged under ♯, so (6.6) follows. �

The treatment above shows that it is possible to satisfy all the T-duality axioms
of Section 6.1.2.1 above, except perhaps for the last one dealing with twisted K-
theory. We will come back to this axiom in the next chapter.

Example 6.5 (The Case of S2 × S1 and S3, Revisited). We conclude this
chapter by looking again at the case of S2 × S1 and S3 from the beginning of this
chapter. Let a ∈ H2(S2), b ∈ H1(S1) be the usual generators. Look at the diagram

(X,H) = (S3, 0)
p

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

(X♯, H♯) = (S2 × S1, a× b)
p♯

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧

Z

We have c1(p) = (p♯)!(H
♯) = a, c1(p

♯) = p!(H) = 0. So indeed T-duality inter-
changes

c1(p) ↔ (p♯)!(H
♯), c1(p

♯) ↔ p!(H).



CHAPTER 7

T-Duality via Crossed Products

7.1. Group Actions on Continuous Trace-Algebras

In Section 6.1.2.1 of the last chapter, we proposed a set of axioms for topological
T-duality, and showed via the Bunke-Schick Theorem (Theorem 6.3) that there is
an essentially unique way of satisfying the first five axioms. The problem is now
to check the final axiom about preservation of twisted K-theory under duality. In
this chapter, we will use the K-theory of crossed products to verify the last axiom.
In this way, we will arrive at a surprising unification of the three areas dealt with
in this book: topology, C∗-algebras, and string duality.

Let’s start by explaining the strategy of the method. Suppose X is a spacetime
manifold which is a principal S1-bundle over Z. Then we have a free action of S1 on
X, and thus an action T → AutC0(X). In order to use Connes’ Thom Isomorphism
Theorem, Theorem 5.10, we lift this action to the universal cover R of T and think
of it as an action α : R → Aut(C0(X)) which is trivial on Z. Form the crossed
product A = C0(X)⋊αR. By Connes’ Theorem, we have K∗+1(A) ∼= K∗(C0(X)) ∼=
K−∗(X). Now suppose we knew for some reason that A is a continuous-trace
algebra over some space X♯, with Dixmier-Douady invariant H♯, and suppose we
knew that X♯ was also a principal S1-bundle over Z. Then we’d have

K∗+1(X♯, H♯) ∼= K∗(X),

which is the final T-duality axiom assuming (X♯, H♯) is T-dual to (X, 0).
Quite magically, this turns out to work! Actually, there is an advantage to

working even more generally, since if the H-flux on X is non-zero, we will need
an action of R on the stable CT-algebra with spectrum X and Dixmier-Douady
invariant H, since the K-theory of this algebra is K∗(X,H).

So we need to understand the structure of AutCT (X,H) (as a topological
group) and actions of R on CT (X,H). Every ∗-automorphism of K(H) is given
by conjugation by a unitary operator, so AutK ∼= PU(H). There is an obvious
map σ : AutCT (X,H) → Homeo(X) gotten by sending an automorphism to the
induced action on the spectrum. If one puts these two facts together, one can
see that AutC0(X,K) ∼= Map(X,PU) ⋊ Homeo(X). Here Map(X,PU) can be
identified with the kernel of σ. A generalization of this to other stable continuous-
trace algebras was proved by Phillips and Raeburn.

Before we get to this, it is convenient to record a very simple but still use-
ful lemma, which connects actions on continuous-trace algebras with actions on
bundles. This will be used several times in this chapter.

Lemma 7.1. Let X be a second-countable locally compact space, let A = CT (X,
H) be a stable continuous-trace algebra with spectrum X, and let π : B → X be the
principal PU -bundle associated to H, so that we can identify A with Γ0(X,B ×PU

63



64 7. T-DUALITY VIA CROSSED PRODUCTS

K), the algebra of sections vanishing at infinity of the bundle of algebras B ×PU K
associated to B.

(1) Let B = B ×PU PU be the “gauge bundle” associated to B, the quotient
of B × PU by the equivalence relation (u, g) ≃ (u · h, h−1gh), h ∈ PU .
(Unlike P , this is a bundle of topological groups over X, so its sections
have a natural topological group structure.) Then AutX A ∼= Γ(X,B) and
AutA ∼= HomeoPU (B), the PU -equivariant homeomorphisms of B.

(2) Let α : G→ HomeoX be an action of a topological group on X by homeo-
morphisms. Then the action of G on X lifts to an action α̃ : G→ AutA,

inducing the action α on the spectrum Â = X, if and only if the action of
G on X lifts to an action of G on the principal PU -bundle B → X defined
by H. (Such an action of G on B is required to commute with the free
PU -action on B.) In fact, actions of G on A lifting α can be identified
with such actions of G on B by bundle automorphisms, or in other words,

by liftings HomeoPU (B)

��
G //

99

Homeo(X).

Proof. Since PU = AutK and A is the algebra of sections of the bundle
of algebras B ×PU K associated to B, a PU -equivariant action of G on B cer-
tainly defines an action of G on A. Conversely, B can be recovered from A via
Dixmier-Douady theory, so that in fact AutA ∼= HomeoPU (B). And AutX A ∼=
ker(HomeoPU (B) → HomeoX), the PU -equivariant homeomorphisms of B lifting
the identity map X → X. Via the theory of gauge groups and bundles (see, e.g.,
[2, §2]), these can be identified with sections of the gauge bundle B. �

The following special case will be especially relevant for us.

Proposition 7.2. Let X be a second-countable locally compact space, and let
A = CT (X,H) be a stable continuous-trace algebra with spectrum X. Suppose a
compact group G acts freely on X. Then the action of G on X lifts to an action of
G on A if and only if H is the pull-back of a class in H3(X/G,Z).

Proof. Since G is compact and acts freely, the quotient space X/G is Haus-
dorff and locally compact, and X → X/G is a principal G-bundle. By the lemma,
the action of G on X lifts to an action on A if and only if it lifts to an action of G on
the associated principal PU -bundle B → X defined by H. If there is such a lifting,
then we have commuting free actions of G and PU on B, so dividing out by G, we
get a principal PU -bundle on X/G pulling back to B. For the other direction, if H
is pulled back from a class in H3(X/G,Z), then B is pulled back from a principal
PU -bundle B′ on X/G, i.e., we have a pull-back diagram

B //

PU

��

B′

PU

��
X

G
// X/G,

and the action of G on the second factor in B′ ×X restricts to a PU -equivariant
action of G on B. �
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7.1.1. The Phillips-Raeburn Theorem.

Theorem 7.3 (Phillips-Raeburn [130], [135, Theorem 5.42]). Let A be a stable
CT-algebra with spectrum X and Dixmier-Douady invariant H. Then the image
of the map σ : AutCT (X,H) → Homeo(X) is precisely the stabilizer of H for the
action of homeomorphisms on H3(X,Z). Let AutX CT (X,H) = kerσ. Then there
is a natural short exact sequence

1 → InnCT (X,H) → AutX CT (X,H)
ρ−→ H2(X,Z) → 0.

Here InnCT (X,H) is the group of automorphisms implemented by unitary multi-
pliers. These are precisely the automorphisms exterior equivalent to the identity.

Proof. Since the Dixmier-Douady class is an invariant of A, certainly any
automorphism of A must preserve it, so the image of σ lies in the stabilizer of
H. For the surjectivity, we can make use of Lemma 7.1, which identifies AutA
with HomeoPU (B). Given ϕ ∈ Homeo(X), note that ϕ∗(B → X) is the bundle
classified by ϕ∗(H), so if ϕ stabilizes H, that means ϕ∗(B → X) ∼= (B → X). An
isomorphism of these bundles then gives an element of HomeoPU (B) lifting ϕ.

As we mentioned above, AutX CT (X,H) = Γ(X,B), where B is the gauge
bundle, a locally trivial bundle of topological groups with fibers ∼= PU , while
InnCT (X,H) consists of sections that lift to the bundle of groups with fibers ∼= U

given by B̃ = B ×PU U , where PU = U/Z(U) acts on U by conjugation. But from
the short exact sequence of topological groups

1 → T → U → PU → 1,

we get an exact sequence of sheaves of sections

1 → T → B̃ → B → 1

and thus an exact sequence in (nonabelian) sheaf cohomology

(7.1) Γ(X, B̃) → Γ(X,B) ρ−→ H1(X,T) ∼= H2(X,Z).

This yields the exact sequence of the theorem except for the surjectivity of ρ, which
can be deduced from a construction related to Proposition 7.4 below. Namely,
given c ∈ H2(X,Z), form the principal S1-bundle p : Y → X associated to it
via the classification of line bundles, (2.1). Pull H back to p∗H ∈ H3(Y,Z)
via the bundle projection p. There is now an evident “pull-back action” β of
T on CT (Y, p∗H) (use Lemma 7.1 again), and a simple calculation shows that
CT (Y, p∗H)⋊β T ∼= CT (X,H). Now by Takai duality (Theorem 3.24), the crossed

product CT (X,H)⋊αZ, where α = β̂ is the dual action, is isomorphic to CT (Y,H).
The fact that taking the spectrum gives the bundle p : Y → X shows that ρ(α) =
c. �

We can think of the Phillips-Raeburn Theorem as a structure theorem for
actions α of Z on CT (X,H), modulo exterior equivalence. For example, the set of
equivalence classes of actions of Z on C0(X,K) can be identified with

H2(X,Z)⋊Homeo(X).

The H2(X,Z) arises as [X,AutK = PU ≃ K(Z, 2)]. ρ(α) can be identified
with the Chern class of the circle bundle

(
CT (X,H)⋊α Z

)
̂→ X. More precisely,

we have the following “appendix” to the Phillips-Raeburn Theorem:
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Proposition 7.4. Let A be a separable continuous-trace algebra with spectrum
X and Dixmier-Douady invariant H, and let α : Z → AutX A be a spectrum-fixing
action of Z on A (which we can identify with the single automorphism α(1)). Then
A⋊α Z is a continuous-trace algebra whose spectrum Y is the total space of a prin-
cipal T-bundle Y → X over X. This bundle is classified by the Phillips-Raeburn
invariant ρ(α) ∈ H2(X,Z), and the Dixmier-Douady invariant of the crossed prod-
uct is the pull-back of H to Y .

Proof. To show the crossed product has continuous trace with spectrum a
principal S1-bundle over X, it suffices to work locally and consider the case where
the Dixmier-Douady invariant is trivial. Stabilizing by tensoring with a copy of K
with trivial action, we can assume then that A = C0(X,K). Then α corresponds
to a map X → AutK ∼= PU , and cutting down to a still smaller neighborhood, we
can assume that the map is null-homotopic. This implies that the action is inner,
since by the homotopy lifting property for the quotient map U → PU , we have a
lifting

X

��}}
1 // T // U // PU // 1,

which shows that the automorphism is implemented by a unitary multiplier. Thus
the action is exterior equivalent to a trivial action, and the crossed product is just
C0(X,K) ⊗ C∗(Z) = C0(X × T,K). This local calculation proves that the crossed
product always has continuous trace, and has spectrum which is a circle bundle over
X. That ρ(α) classifies this bundle is basically true by definition. Furthermore, the

dual action of Ẑ = T implements the bundle projection map Y = (A×α Z)̂ → X.
There is one more thing to verify, namely that the Dixmier-Douady invariant

of B = A ⋊α Z is the pull-back of that of A. For this, it is useful to keep in mind
that by Takai Duality, Theorem 3.24, B ⋊α̂ T is stably isomorphic to A, hence
isomorphic to A if (as we may, without loss of generality) we take A to be stable.
By Lemma 7.1, α̂ gives a PU -equivariant action of T on the PU -bundle associated
to the Dixmier-Douady class of B, lifting the free T-action on Y with quotient
space X, and the quotient of this action must be precisely the PU -bundle over X
associated to the Dixmier-Douady class H of B. Proposition 7.2 says exactly that
the Dixmier-Douady class of B is the pull-back of H. �

For our purposes we need a similar structure theorem for actions of R on
CT (X,H), modulo exterior equivalence.

Lemma 7.5 (Lifting). Suppose one is given an action α of R on a (second-
countable) connected locally compact space X (of the homotopy type of a finite CW
complex ). Let A be a stable CT-algebra with spectrum X. Then α lifts to an action
α̃ of R on A, and the lifted action is unique up to exterior equivalence.

Proof of Existence in the Smooth Case. For most applications to phy-
sics, we only need the case where X is a manifold and the action α is smooth.
The algebra A corresponds to a locally trivial principal PU -bundle B over X. We
may assume this bundle is smooth as well (since every equivalence class of bundles
contains a smooth representative). By Lemma 7.1, it suffices to lift the action of
R on the base X to a PU -equivariant action on the bundle B. Now an R-action is
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essentially the same thing as a vector field, since integrating a vector field gives a
smooth R-action, while differentiating a smooth R-action gives a vector field.1 So
we need to lift a vector field on the base to a PU -equivariant “horizontal” vector
field on the bundle, and a choice of a connection is precisely what is needed for this.
Since any smooth bundle admits [lots of] connections, this proves existence. �

Proof of Uniqueness. For the uniqueness, we don’t need the smoothness of
the action. Let α and α′ be two actions on R on A inducing the same action on
the spectrum X. Then c : t 7→ α′

t(αt)
−1 is a continuous map R → AutX A. Since

we are assuming that X is homotopically finite, so that H2(X,Z) is countable
and discrete in the natural topology, whereas R is connected, the Phillips-Raeburn
Theorem (Theorem 7.3) shows that c takes values in the inner automorphisms,
those induced by unitary multipliers. Furthermore, since α and α′ are actions, c is
a 1-cocycle with values in InnA. We need to lift it to a 1-cocycle with values in
the unitary group of M(A). This can be done using the method described below
in Section 9.2.0.2. The point is that there is a suitable cohomology theory H∗

M

for topological groups G and suitably topologized modules. From the short exact
sequence

1 → Γ(X,T) → Γ(X, B̃) →
(
Γ(X,B)

)
0
→ 1

of R-modules, where
(
Γ(X,B)

)
0
denotes the kernel of the map ρ in (7.1), we get

an exact sequence

H1
M (R,Γ(X, B̃)) → H1

M (R,
(
Γ(X,B)

)
0
) → H2

M (R, C(X,T)),

which shows we have the required lifting of cocycles provided an obstruction in
H2
M (R, C(X,T)) vanishes. But in fact the whole group in which the obstruction

lives is zero, as follows from Corollary 9.2 and Theorem 9.3. �

Proof in the Case of a Free T-Action. Since the reader might find the
above proofs of existence and uniqueness unsatisfying, given that they use ideas
from differential geometry and group cohomology for which there is no hint in the
original statement of the theorem, we shall give a self-contained proof of the case
of the Lemma needed for Theorem 7.6 below. Namely, we assume p : X → Z is a
principal T-bundle, and we consider the R-action on X which is trivial on Z and
factors to the given action of T = R/Z.

First consider the case X = T with the simply transitive free action of T on it,
so Z is just a single point. Thus A = C(T)⊗K, and an action of R on A inducing
the given action on the spectrum can be written as a product of the obvious action
α = τ ⊗1K, where τ is the translation action of R on C(T), and a 1-cocycle {u̇t}t∈R

for α with values in C(T, PU), i.e., a map u̇ : R × T → PU satisfying the cocycle
identity u̇(t + s, ẋ) = u̇(t, ẋ)u̇(s, ṫ + ẋ), necessarily jointly continuous in the two
variables. Such a cocycle is determined uniquely by its restriction to [0, 1] × {0̇},
which is a continuous path γ̇ in PU with γ̇(0) = 1̇, and conversely, it’s easy to
see that any such path extends uniquely to a cocycle. Since the quotient map
U ։ PU is a fibration, any path γ̇ in PU with γ̇(0) = 1̇ lifts to a path γ in U with
γ(0) = 1, so by the same sort of reasoning, any 1-cocycle lifts to a 1-cocycle with
values in C(T, U). Thus any action of R on A inducing the translation action on

1There is a small additional complication if X is noncompact, since then one has to make
sure orbits of the integrated action don’t “run off to infinity,” but this won’t happen in our case

since we are lifting a vector field on X which integrates to a genuine action of R.
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the spectrum is exterior equivalent to α. Note incidentally that we’ve shown that
the sets of 1-cocycles Z1

M (R, C(T, PU)) and Z1
M (R, C(T, U)) can be identified with

path spaces, and are thus contractible. So this completes the proof in this case.
Next suppose that both the Dixmier-Douady class H of A and the class of the

bundle p : X → Z are trivial, i.e., that A ∼= C0(Z) ⊗ C(T) ⊗ K. Once we have
fixed this isomorphism, i.e., fixed a trivialization of the bundle attached to A as in
Lemma 7.1, an action of R on A inducing the given action on the spectrum can be
written as a product of the obvious action 1C0(Z) ⊗ τ ⊗ 1K with a 1-cocycle. Thus
the set of all actions inducing the given action on the spectrum can be identified
with C(Z,Z1

M (R, C(T, PU))). Since Z1
M (R, C(T, PU)) is contractible, this space

is also contractible. And since there is a continuous lifting from Z1
M (R, C(T, PU))

to Z1
M (R, C(T, U)), the lift of the action on X to an action on A is unique up to

exterior equivalence.
Now consider the general case. Since X and Z are homotopically finite, we can

choose a finite open covering {Vj} of Z such that for each j, p and H are trivial
when restricted to p−1(Vj). As we have already seen, there is a lifted action of R
on the restriction of A to each p−1(Vj). Furthermore, the set of all such actions is
contractible, and constitutes a single exterior equivalence class. By induction on
n, we construct a lifting over p−1(V1 ∪ · · · ∪ Vn) and show the set of such liftings
(over any T-invariant open subset) is contractible and constitutes a single exterior
equivalence class. The result for V1 starts the induction. Assuming we know the
result for n, we just need to patch together a lifting over p−1(V1 ∪ · · · ∪ Vn) and a
lifting over p−1(Vn+1). This is possible since on the overlap set, the set of liftings
is contractible, so that we can extend the lifting over p−1

(
Vn+1 ∩ (V1 ∪ · · · ∪ Vn)

)

to a lifting over p−1(Vn+1) compatible with what we have over p−1(V1 ∪ · · · ∪ Vn).
The rest of the inductive step is similar. �

7.2. The Raeburn-Rosenberg Theorem

Theorem 7.6 (Raeburn-Rosenberg [134]). Let X be a (second countable) lo-
cally compact space (of the homotopy type of a finite CW complex ). Suppose X is
the total space of a principal S1-bundle p : X → Z, and suppose H ∈ H3(X,Z). Let
A = CT (X,H). Lift the free action of T = R/Z on X to a locally free action of R
on X, and then to an action α of R on A using the Lifting Lemma, Lemma 7.5. Let
B = A⋊α R. Then B is also a stable CT-algebra, with spectrum X♯ the total space
of another principal S1-bundle p♯ : X♯ → Z. The bundles and Dixmier-Douady
classes are related by

(7.2) c1(p) = (p♯)!(H
♯) and c1(p

♯) = (p)!(H).

The algebra B ⋊α̂ R is isomorphic to A again.
In fact, if Y is the spectrum of A⋊α|Z Z, or equivalently, of B ⋊α̂|Z Z, there is

a commuting diagram of principal S1-bundles

(7.3) Y
(p♯)∗p

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ p∗(p♯)

��❅
❅❅

❅❅
❅❅

❅

X♯

p♯

  ❆
❆❆

❆❆
❆❆

❆
X

p

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

Z .



7.2. THE RAEBURN-ROSENBERG THEOREM 69

Proof. First we need to check that B has continuous trace, with spectrum
a principal S1-bundle over Z. Since the statement is local, it’s enough to prove
this when X = Z × T and H is trivial. But then by the uniqueness statement in
the Lifting Lemma, we can assume up to Morita equivalence that we’re looking
at the abelian case, i.e, at C0(Z) ⊗

(
C(R/Z) ⋊ R

)
, where R is acting on R/Z by

translation. By the Green Imprimitivity Theorem, Theorem 5.11, C(R/Z) ⋊ R is

Morita equivalent to C∗(Z) ∼= C(Ẑ) = C(S1). So the crossed product C0(Z×T)⋊R

is Morita equivalent to C0(Z ×T). Though note, for purposes of connecting this to
T-duality, that the circle factor is really the dual circle to the original one.

The fact that B ⋊α̂ R is isomorphic to A again follows from Takai Duality
(Theorem 3.24) and stability.

Similarly, if we restrict the action α on A = CT (X,H) from R to Z, the action
is now trivial on the spectrum, and so by the Phillips-Raeburn Theorem, Theorem
7.3, it has an obstruction class ρ(α|Z) ∈ H2(X,Z), which is the Chern class of a
principal S1-bundle Y → X, where Y is the spectrum of A ⋊α|Z Z. This algebra
also has continuous trace, as one can see by a local calculation. Furthermore,

B ⋊α̂|Z Z =
(
A⋊α R

)
⋊α̂|Z Z.

We now use the “Packer-Raeburn stabilization trick” [126], together with the fact
that A was assumed stable to begin with. The reader need not know anything
about the details, but this means (given suitable separability hypotheses) that any
time one has a crossed product of a stable C∗-algebra A by a locally compact group
G (in our case R), with G having a closed normal subgroup N (in our case Z), one
can rewrite A ⋊ G as an iterated crossed product (A ⋊N) ⋊ G/N . Hence we can
rewrite B ⋊α̂|Z Z as

((
A⋊α|Z Z

)
⋊β T

)
⋊β̂ Z ∼= A⋊α|Z Z,

with β induced from the original action α of R, and the last statement following
from Takai duality for β. So now we get a diamond

Y
p♯
1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ p1

��❅
❅❅

❅❅
❅❅

❅

X♯

p♯

  ❆
❆❆

❆❆
❆❆

❆
X

p

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

Z .

By the universal property of the pull-back, it follows that p1 = p∗(p♯) and that

p♯1 = (p♯)∗(p), proving equations (7.3).
It remains to check equation (7.2). We will check at the same time that the

duality (X,H) ↔ (X♯, H♯) corresponds to the homotopy automorphism of the
Bunke-Schick classifying space R, that corresponds to interchanging the two factors
of K(Z, 2) in the Postnikov decomposition (6.3), so that the “analytic T-duality”
given by crossed products of C∗-algebras coincides with the topological T-duality
of Chapter 6.

The first step is to check that ρ(α|Z) = p∗(p!(H)). But what is ρ(α|Z)? Think of
the principal PU -bundle B → X defined by H. As t goes from 0 to 1, the action of t
on x ∈ X traces out a circle (a fiber of X → Z), so the lift αt returns to the fiber Bx
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of B over the starting point x. Thus α1 is a PU -bundle automorphism of B → X,
and thus is a section of the gauge bundle B over X. The class ρ(α|Z) is the image of
this section in H1(X,T) ∼= H2(X,Z), a kind of monodromy invariant. This clearly
depends on the interaction between the bundle p : X → Z and the class H defining
the PU -bundle B → X. So by naturality, ρ(α|Z) must be given by a universal
formula involving only H and p, and the only possibility is something of the form
np∗(p!(H)), where n is an integer. To check that the formula is exactly p∗(p!(H)),
it is enough to know what happens in a single nontrivial example, say when X =
S2 × S1 and H = a × b, a and b the standard generators of H2(S2) and H1(S1),
respectively. Then [p] = 0 and p∗(p!(H)) = a × 1. Choose γ ∈ Aut(C(S2,K))

with ρ(γ) = a, and view C(S2,K) as a Z-algebra via γ. Then A = IndRZ C(S
2,K)

is an R-algebra with spectrum X = S2 × S1, and its Dixmier-Douady invariant is
H = a × b, as one can see from the fact that it is obtained by gluing two copies
of C(S2 × [0, 1],K) together using a nontrivial clutching map. When we restrict

α = IndRZ γ to Z, we get an action which is pointwise given by γ on each fiber, so
ρ(α|Z) = ρ(γ)× 1 = a× 1 = p∗(p!(H)).

To complete the proof of (7.2), it suffices to check the “universal example”
X = E and Z = R, H the canonical class in H3(E,Z) (in the notation of Chapter
6). More precisely, since E and R are not locally compact but are locally finite
CW complexes, we take X and Z to be finite skeleta of E and R and pass to the
limit, but we’ll mostly ignore this technicality. So take Z to be a sufficiently high
finite skeleton of R, X its preimage in E, and H the canonical class in H3(E),
restricted to X. Let A = CT (X,H), an let α be an action of R on A, with Z acting
trivially on X and with T = R/Z acting via the free circle group action on X with
quotient space Z. By the formula ρ(α|Z) = p∗(p!(H)) that we already verified,
C = A ⋊α|Z Z has spectrum Y an approximation to K(Z, 3) and Dixmier-Douady

class the canonical class in H3(Y ), with Y → X the canonical principal S1-bundle
over X ≈ E ≃ K(Z, 2)×K(Z, 3).

Now consider the diamond (7.3). As far as cohomology through degree 4 is
concerned, we can assume that Z looks like R, so H2(Z,Z) = Zu⊕Zv, where u and
v are as in the proof of Theorem 6.3, with relations u · v = 0, and H3(Z,Z) = 0,
H4(Z,Z) = Zu2 ⊕ Zv2. We are assuming that u = c1(p). Since we are assuming
H3(Y,Z) = Zw, with w the pull-back ofH by p∗(p♯), it follows thatH♯ ∈ H3(X♯,Z)
also pulls back to w, and so H3(X♯,Z) 6= 0. And since c1(p

♯) pulls back under p to
the generator of H2(X,Z), we must have c1(p

♯) = v + nu for some n ∈ Z. (This is
because u = c1(p) generates the kernel of p∗ : H2(Z) → H2(X).) But if n 6= 0, the
kernel of multiplication by c1(p

♯) on H2(R) is

{xu+ yv | (xu+ yv) · (v + nu) = yv2 + xnu2 = 0} = 0,

which by the Gysin sequence for p♯ would force H3(X♯) = 0, a contradiction. Thus
what we already know about A ⋊α|Z Z implies the formula (7.2). This completes
the proof. �



CHAPTER 8

Higher-Dimensional T-Duality via Topological

Methods

8.1. Higher-Dimensional T-Duality

We now want to generalize T-duality to the case of spacetimes X “compactified
on a higher-dimensional torus,” or in other words, equipped with a principal Tn-

bundle p : X → Z. In the simplest case, X = Z × Tn = Z ×
n︷ ︸︸ ︷

S1 × · · ·S1. We can
then perform a string of n T-dualities, one circle factor at a time. A single T-duality
interchanges type IIA and type IIB string theories, so this n-dimensional T-duality
“preserves type” when n is even and switches it when n is odd. In terms of our
set of axioms for topological T-duality, we would therefore expect an isomorphism
K∗(X,H) ∼= K∗(X♯, H♯) when n is even and K∗(X,H) ∼= K∗+1(X♯, H♯) when n
is odd.

In the higher-dimensional case, a new problem presents itself: it is no longer
clear that the T-dual should be unique. In fact, if we perform a string of n T-
dualities, one circle factor at a time, it is not clear that the result should be inde-
pendent of the order in which these operations are done. Furthermore, a higher-
dimensional torus does not split as a product in only one way, so in principle there
can be a lot of non-uniqueness.

The way out of this difficulty has therefore been to try to organize the infor-
mation in terms of a T-duality group, a discrete group of T-duality isomorphisms
potentially involving a large number of spacetimes and H-fluxes. We can think of
this group as operating on some big metaspace (sometimes called the “landscape
of string theory vacua” or simply “string landscape” [155]) of possible spacetimes.

Another difficulty is that there are some spacetimes with H-flux that would
appear to have no higher-dimensional T-duals at all, at least in the sense we have
defined them so far.

Example 8.1. Consider the case of X = T 3, which is a principal T3-bundle
over a point, and H = α × α × α the generator of H3(X,Z) ∼= Z (α the gen-
erator of H1(S1)). Choose one of the circle factors, say the first one, and du-
alize. Since p : T 3 → T 2 is a trivial bundle, the result of the first T-duality
should be p1 : X

(1) → T 2 with H-flux H(1), where c1(p1) = p!(H) = α × α and
(p1)!(H

(1)) = 0. Thus X(1) is the Heisenberg nilmanifold and, from the Gysin
sequence, (p1)! : H

3(X(1)) → H2(T 2) is an isomorphism, and thus H(1) = 0.
Now we continue with X(1), the Heisenberg nilmanifold, and trivial H-flux.

Note that π1(X
(1)) is nonabelian and H1(X

(1),Z) ∼= Z2. If X(1) is to be the total
space of a principal S1-bundle, the base has to be an oriented 2-manifold with
vanishing Euler characteristic, which can only be T 2. Since there is no way to split

71



72 8. HIGHER-DIMENSIONAL T-DUALITY VIA TOPOLOGICAL METHODS

off an S1-factor from X(1), there is only one way to write the manifold X(1) as
the total space of a principal S1-bundle, namely as the way it already arose as an
S1-bundle over T 2. So the only way to T-dualize again is to come back to where
we started. In other words, there is a “missing T-dual.”

Example 8.2. We can also think about the example of X = T 3, with H =
α× α× α, as a case of a (trivial) principal T2-bundle over S1 (via, say, projection
p on the second factor when we write T 3 as T 2 × S1). But there are no nontrivial
principal T2-bundles over S1, so the only possible T-dual of this form is just the
original space back again, again with the same H-flux. This does not seem right
since we expect a nontrivial H-flux to be reflected in nontrivial topology for the
dual bundle.

8.2. A Higher-Dimensional Bunke-Schick Theorem

8.2.1. Formulation and Consequences. What we are aiming for is a higher-
dimensional version of the Bunke-Schick Theorem, Theorem 6.3. As before, we fix

a locally compact base space Z and consider the set of pairs (X
π−→ Z,H), where X

is a principal Tn-bundle over Z and H ∈ H3(X,Z). We could show that the set of
all such pairs up to isomorphism is a representable functor and comes by pull-back
from a universal example:

X

π

��

// E

p

��
Z // R,

with the horizontal maps unique up to homotopy and H pulled back from a canon-
ical class h ∈ H3(E,Z).

The problem is the phenomenon we already mentioned of missing T-duals. For
this reason, we add an extra condition: that H restricts to 0 on each torus fiber.
For if not, when we restrict to a fiber, we basically come back to Example 8.1 from
before.

Theorem 8.3 (Mathai-Rosenberg [109, §5], Bunke-Rumpf-Schick [33]). Let

P = {(X π−→ Z,H) | π a Tn-bundle, H ∈ H3(X,Z), H|T = 0 ∀ fibers T of π}/∼ .

There is a connected classifying space R, unique up to homotopy equivalence, such
that each (X,H) ∈ P comes by pull-back from a universal example:

X

π

��

// E

p

��
Z // R.

Furthermore, the horizontal maps are unique up to homotopy. The space R has the

homotopy groups πj(R) = 0 for j > 3, π1(R) ∼= Z(
n
2), π2(R) ∼= Z2n, π3(R) ∼= Z.

Let R̃ denote the universal cover of R. Then R̃ sits in a Postnikov fibration

(8.1) K(Z, 3) // R̃

��
K(Zn, 2)×K(Zn, 2),
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with k-invariant x1y1 + · · · + xnyn, the x’s and y’s being the canonical generators

of H2(K(Zn, 2)×K(Zn, 2)) = H2
(
(CP∞)2n

)
.

Remark 8.4. Note that the group O(n, n;Z) of integral matrices preserving the
form x1y1+ · · ·+xnyn preserves the k-invariant of (8.1) and thus acts by homotopy

automorphisms on R̃. This is indeed the T-duality group studied by physicists.
That essentially means that if we restrict to the case where Z is simply connected,
we have a good theory of topological T-duality.

However, there is no obvious action of O(n, n;Z) on R itself. This is related to
Example 8.2 we saw before of missing T-duals when Z = S1 and n = 2.

Sketch of the Proof. We begin by constructing (explicitly!) the spaces E
and R and showing that they have the right universal property. Let

(8.2) E = ETn ×Map0(T
n,K(Z, 3)), R = ETn ×Tn Map0(T

n,K(Z, 3)),

where ETn → BTn = K(Zn, 2) ∼= (CP∞)n is the universal Tn-bundle, and where
Map0 denotes the set of null-homotopic maps (those giving the trivial class in
H3(Tn,Z)). Note that using Map0 in place of Map makesR path-connected. (When
n = 1, Map(Tn,K(Z, 3)) is the free loop space ofK(Z, 3), and is already connected.)
There is an obvious map

c : R = ETn ×Tn (· · · ) → ETn ×Tn pt = BTn

which corresponds to forgetting the second entry of a pair and just taking the
underlying bundle. This map is a fibration with homotopy fiber Map0(T

n,K(Z, 3)),
and in fact it is the classifying map for the quotient map p : E ։ R, which sits in
a homotopy pull-back diagram

E //

p

��

ETn

��
R

c // BTn.

In fact we can take E = ETn×Map0(T
n,K(Z, 3)). Then we define h : E → K(Z, 3)

to be given by

h(v, γ) = γ(0),

where γ ∈ Map0(T
n,K(Z, 3)) and v ∈ ETn. Clearly any map Z → R enables us to

pull back the canonical pair (E,h) to a pair over Z.

Now let’s consider the other direction. Given (X
π−→ Z,H) representing a class

in P, we know X
π−→ Z is pulled back from ETn → BTn via a classifying map f

unique up to homotopy. Also H comes from a classifying map h : X → K(Z, 3).
Then we fill in the diagram

K(Z, 3) E

p

��

hoo

{{✇✇
✇✇
✇✇
✇✇
✇

X

π

��

h
;;✇✇✇✇✇✇✇✇✇

f̂

//

ϕ̂

55

ETn

��

R

c
{{✈✈
✈✈
✈✈
✈✈
✈

Z
f

//

ϕ

55

BTn.
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as shown to make it commute and to realize (X,h) as the pull-back of (E,h).

Indeed, we simply define ϕ̂ by ϕ̂(x) = (f̂(x), γ), where γ ∈ Map(Tn,K(Z, 3))
is defined by γ(t) = h(x · t). Since the definition of a pair includes the requirement
that h be null-homotopic on each torus fiber, γ indeed lies in Map0(T

n,K(Z, 3)).
The map ϕ̂ is Tn-equivariant and descends to a map ϕ : Z → R since

ϕ̂(x · t0) = (f̂(x · t0), γ′) = (f̂(x) · t0, t−1
0 · γ) with γ′(t) = h((x · t0) · t) = γ(t0t).

Thus R has the required universal property.
Now we need to check the statements about the homotopy groups. Recall that

we had a fibration

Map0(T
n,K(Z, 3)) → R→ BTn = K(Zn, 2).

So to compute the homotopy groups of R, we just need to compute those of the
mapping space Map0(T

n,K(Z, 3)). We have

πj(Map0(T
n,K(Z, 3))) =

[
(Sj , pt), (Map0(T

n,K(Z, 3)), pt)
]

= ker
(
[Sj × Tn,K(Z, 3)] → [Tn,K(Z, 3)]

)

= ker
(
H3(Sj × Tn,Z) → H3(Tn,Z)

)

=





0, j > 3,

H2(Tn,Z), j = 1,

H1(Tn,Z), j = 2,

Z j = 3.

Thus πj(Map0(T
n,K(Z, 3))) ∼= Z(

n
2) if j = 1, Zn if j = 2, Z if j = 3, and 0

otherwise. Plugging this data into the long exact homotopy sequence

· · · → πj+1(K(Zn, 2))
∂−→ πj(Map0(T

n,K(Z, 3)))

→ πj(R) → πj(K(Zn, 2)) → · · ·

gives the calculation of the homotopy groups, since it’s easy to see the map π2(R) →
π2(K(Zn, 2)) is surjective and the only potentially non-zero connecting map ∂ is

π2(K(Zn, 2)) → π1(Map0(T
n,K(Z, 3))).

At this point we know R̃ sits in a Postnikov fibration

K(Z, 3) // R̃

��
K(Zn, 2)×K(Zn, 2),

and it remains to compute the k-invariant. This can be done using computations
with the Serre spectral sequence and reduction to the case n = 1, where we already
know the result. �
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8.2.2. More About the Classifying Space. While we have an explicit de-
scription of the classifying space R, it is a somewhat complicated and mysterious
space compared to the case of n = 1. The reason is that we have three non-zero
homotopy groups, one of which is π1. Traditional Postnikov theory doesn’t apply
to spaces which aren’t simply connected, but fortunately one can check that R is
simple, i.e., π1(R) acts trivially on the other homotopy groups. (Otherwise things
would be really complicated.)

In the next chapter we will focus on the first interesting case, n = 2. There
still is no natural T-duality action on all of R, because of the case of a “missing
T-dual” described earlier. But when n = 2, π1(R) ∼= Z, which means one has

maps R
**
S1ii inducing isomorphisms on π1, the map to the right given by the

generator of H1(R,Z) ∼= [R,S1] and the map to the left given by the inclusion of a
loop generating π1. These fit into a split homotopy fibration

R̃ // R // S1.
uu

More detailed analysis then shows that if n = 2, R has the homotopy type of R̃×S1.

Since we know the homotopy type of R̃ completely, this gives us a complete picture
of R. In particular, the T-duality group O(2, 2;Z) can be made to act on R by
homotopy automorphisms, but not in any natural way.





CHAPTER 9

Higher-Dimensional T-Duality via C
∗-Algebraic

Methods

9.1. Methodology and a Key Example

9.1.1. Methodology. In this chapter we will go back to T-duality to the
case of spacetimes X “compactified on a higher-dimensional torus,” but using the
C∗-algebraic method introduced in Chapter 7. Again we start with a principal
Tn-bundle p : X → Z and an “H-flux” H ∈ H3(X,Z). As in the last chapter, we
assume that H is trivial when restricted to each Tn-fiber of p. This of course is no
restriction if n = 2.

Proceeding as before, we want to lift the free action of Tn on X to an action
on the continuous-trace algebra A = CT (X,H). Usually (because of Proposition
7.2) there is no hope to get such a lifting for Tn itself, so we go to the universal

covering group Rn. If Rn acts on A so that the induced action on Â is trivial on
Zn and factors to the given action of Tn = Rn/Zn, then we can take the crossed
product A ⋊ Rn and use Connes’ Thom Isomorphism Theorem, Theorem 5.10, to
get an isomorphism between K∗+n(X,H) and K∗(A⋊Rn).

Under favorable circumstances, we can hope that the crossed product A⋊ Rn

will again be a continuous-trace algebra CT (X♯, H♯), with p♯ : X♯ → Z a new
principal Tn-bundle and with H♯ ∈ H3(X♯,Z). If we then act on CT (X♯, H♯) with

the dual action of R̂n, then by Takai Duality, Theorem 3.24, and stability, we come
back to where we started. So we have a topological T-duality between (X,H) and
(X♯, H♯). Furthermore, we have an isomorphism

K∗+n(X,H) ∼= K∗(X♯, H♯),

as required for matching of D-brane charges under T-duality.
Now what about the problems we identified before, about potential non-unique-

ness of the T-dual and “missing” T-duals? These can be explained either by lack
of a suitable action of Rn on A = CT (X,H), or by non-uniqueness of the lift to
an action of Rn on A = CT (X,H), or by failure of the crossed product to be a
continuous-trace algebra, or by a combination of the last two situations.

9.1.2. A Key Example. Let’s now examine what happens when we try to
carry out this program in one of our “problem cases,” n = 2, Z = S1, X = T 3 (a
trivial T2-bundle over S1), and H the usual generator of H3(T 3). First we show
that there is an action of R2 on CT (X,H) compatible with the free action of T2 on
X with quotient S1. We will need the definition of an induced action from Section
5.3. We start with an action α of Z2 on C(S1,K) which is trivial on the spectrum.
This is given by a map Z2 → C(S1,AutK) = C(S1, PU(L2(T))) sending the two
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generators of Z2 to the maps S1 → U(L2(T)):
{
w 7→ multiplication by z,

w 7→ translation by w.

(Though these unitaries do not commute in U , their images in PU do commute as
required.)

Now form A = IndR
2

Z2 C(S1,K). This is a C∗-algebra with R2-action Indα

whose spectrum (as an R2-space) is IndR
2

Z2 S1 = S1 × T2 = X. We can see that

A ∼= CT (X,H) via “inducing in stages”. Let B = IndRZ C(S
1,K(L2(T))) be the

result of inducing over the first copy of R. It’s clear that B ∼= C(S1 × T,K). We
still have another action of Z on B coming from the second generator of Z2, and
A = IndRZ B. The action of Z on B is by means of a map σ : S1×T → PU(L2(T)) =
K(Z, 2), whose value at (w, z) is the product of multiplication by z with translation
by w. Thus A is a CT-algebra with Dixmier-Douady invariant [σ]× c = H, where
[σ] ∈ H2(S1 × T,Z) is the homotopy class of σ and c is the usual generator of
H1(S1,Z).

Now that we have an action of R2 on A = CT (X,H) inducing the free T2-action
on the spectrum X, we can compute the crossed product to see what the associ-

ated “T-dual” is. Since A = IndR
2

Z2 C(S1,K), we can use the Green Imprimitivity
Theorem, Theorem 5.11, to see that

A⋊Indα R2 ∼=
(
C(S1,K)⋊α Z2

)
⊗K.

Recall from Section 5.3.1 that Aθ is the universal C∗-algebra generated by
unitaries U and V with UV = e2πiθV U . So if we look at the definition of α,
we see that A ⋊Indα R2 is the algebra of sections of a bundle of algebras over
S1, whose fiber over e2πiθ is Aθ ⊗ K. Alternatively, it is Morita equivalent to
C∗(Γ), where Γ is the discrete Heisenberg group of strictly upper-triangular 3 × 3
integral matrices. This calculation suggests that irrational rotation algebras should
in some cases be connected to string theory. Indeed, Connes, Douglas, and Schwarz
[46] have constructed a physical model based on noncommutative tori and related
to M-theory. This in turn has led to an explosion of work on string theory in
“noncommutative spacetime,” which is partially summarized in [157].

Put another way, we could argue that we’ve shown that C∗(Γ) is a noncommuta-
tive T-dual to (T 3, H), both viewed as fibering over S1. So we have an explanation
for the missing T-dual: we couldn’t find it just in the world of topology alone because
it’s noncommutative. We will want to see how widely this phenomenon occurs, and
also will want to resolve the question of uniqueness of T-duals when n > 1.

9.2. Uniqueness of Group Actions

To deal with the uniqueness question, we need to recall the notion of exterior
equivalence which came up in Section 5.2 for actions of a group G on a C∗-algebra
A. We want to answer the question: if α and α′ are two actions of a Lie group G
(say R2) on a CT-algebra A = C(X,H), and if α and α′ induce the same action of
G on X, when are they exterior equivalent?

We will come back to these questions shortly, but first we need a digression on
group cohomology.
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9.2.0.1. Cohomology Theory for Locally Compact Groups. As we have men-
tioned before, an action of a (second-countable) locally compact group G on a
(separable) C∗-algebra A is really a continuous homomorphism from G into the
topological group AutA. This topological group is almost never locally compact,
but it is Polish, meaning that the group is second-countable (thus separable and
metrizable) and complete in its two-sided uniformity. Since the topologies of G
and AutA are important for our purposes, it seems natural to study group actions
using a cohomology theory for (second-countable) locally compact groups acting on
Polish modules. There is one (and only one) such theory satisfying certain obvious
axioms, namely Calvin Moore’s cohomology theory [116, 117, 118], which we will
denote by H•

M (G,—). This is sometimes called cohomology with Borel cochains,
since it can be computed from the complex of Borel cochains on G with values
in A. (Part of the genius of Moore’s theory is that using Borel cochains, as op-
posed to continuous ones, is essential here, since there may not be enough of the
latter for topological reasons. Nevertheless, it turns out that any Borel 1-cocycle
is automatically continuous.) Of course, if G is discrete, then any cocycle for G is
automatically continuous (or Borel), so Moore cohomology in this case is just usual
cohomology for groups.

We will need the following general theorems about the theory H•
M (G,—). The

first generalizes the well-known fact that for a discrete group G, the group coho-
mology of G agrees with the topological cohomology of the classifying space BG.

Theorem 9.1 (Wigner [171]). Let G be a Lie group (with countably many
components) and let A be a countable discrete G-module. Then there is a natural
isomorphism H•

M (G,A) ∼= H•(BG,A), where A is the locally constant sheaf (i.e.,
local coefficient system) defined by A on the classifying space BG.

Corollary 9.2. Let G be a vector group and let A be a countable discrete
group (with the trivial G-action). Then Hk

M (G,A) = 0 for k > 0.

Proof of Corollary from the Theorem. If G is a vector group, G is
contractible and so BG is contractible. Since the action of G on A is trivial, A
is the constant sheaf A, and so H•(BG,A) ∼= H•(BG,A) ∼= H•(pt, A), which
vanishes in positive degrees. �

Theorem 9.3 (Generalized Van Est [165, 73]). Let G be a vector group and
let A be a G-module which is a separable locally convex topological vector space, A∞

the smooth vectors for the G-action. Then

Hk
M (G,A) ∼= Hk

M (G,A∞) ∼= Hk
Lie(g, A

∞).

Here H•
Lie(g,—) is Lie algebra cohomology for the Lie algebra g of G. In particular,

the cohomology vanishes for k > dimG.

9.2.0.2. Obstruction Theory for Equivalence of Group Actions. Now suppose
G is a second-countable locally compact group and A is a separable C∗-algebra.
Recall that two actions α and α′ of G on A are exterior equivalent if α′

gα
−1
g = Adug,

with g 7→ ug a 1-cocycle G → U(M(A)). Here U(M(A)) is the unitary group of
the multiplier algebra of M(A), with the Polish topology coming from its action on
A on the left and the right. Assume the center of U(M(A)) is C(X,T) for some
second-countable locally compact space X. Then the group C(X,T) is Polish for
the compact-open topology on maps X → T.
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Theorem 9.4 (Rosenberg [140]). In this situation, the actions α and α′ are
exterior equivalent if and only if two conditions are satisfied:

• ∀g ∈ G, we need α′
gα

−1
g ∈ InnA, i.e., is given by conjugation by a unitary

multiplier.
• we need vanishing of an additional obstruction in H2

M (G,C(X,T)).

Proof. If the actions are exterior equivalent, then first of all α′
gα

−1
g must be

inner for all g ∈ G, but also we need a lifting

G

xx
α′α−1

��
1 // C(X,T) // U(M(A)) // Inn(A) // 1.

From the short exact sequence

1 → C(X,T) → U(M(A)) → Inn(A) → 1

we obtain a long exact cohomology sequence1

· · · → H1
M (G,U(M(A))) → H1

M (G, Inn(A))
∂−→ H2

M (G,C(X,T)),

and one has the desired lifting of the 1-cocycle from G→ Inn(A) to G→ U(M(A))
exactly when ∂(α′α−1) = 1 in H2

M (G,C(X,T)). �

9.2.0.3. Calculations for Our Example. Let’s compute the obstructions for the
example above with n = 2, Z = S1, and X = T 3. Is the action Indα we wrote
down the unique action (up to exterior equivalence) inducing the free action of T2

on X?
By the Phillips-Raeburn Theorem, Theorem 7.3,

AutX CT (X,H)/ InnCT (X,H) ∼= H2(X,Z),

which is discrete. Since R2 is connected and we are considering only continuous
actions, it follows that any two actions inducing the same action on the spectrum
do indeed differ by a cocycle in InnCT (X,H). So the first condition in Theorem
9.4 is satisfied and we need to check the second condition.

This requires computing the cohomology of C(X,T) (as a module over G = R2).
First we reduce to computing the cohomology of C(X,R), using the exact sequences
of R2-modules

1 → C(X,T)0 →C(X,T) → H1(X,Z) → 1,

1 → H0(X,Z) →C(X,R) → C(X,T)0 → 1.

(The action of R2 here of course comes from the action on X.)
By Corollary 9.2, the higher cohomology of the discrete G-modules H0(X,Z) ∼=

Z and H1(X,Z) ∼= Z3 must vanish. So by the long exact cohomology sequences for
these exact sequences of modules, we find that

H2
M (G,C(X,T)) ∼= H2

M (G,C(X,T)0) ∼= H2
M (G,C(X,R)).

We can now apply Theorem 9.3, getting

H2
M (G,C(X,T)) ∼= H2

M (G,C(X,R)) ∼= H2
Lie(g, C

sm(X)),

1The groups U(M(A)) and Inn(A) are noncommutative, but one still gets an exact sequence

in (nonabelian) cohomology going out as far as indicated.
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where Csm(X) denotes functions which are smooth along the G-orbits. (Note that
this is not the same as C∞(X), as functions in Csm(X) are smooth in two T-
variables but only continuous in the third—the Z coordinate.) By Poincaré duality
in Lie algebra cohomology, the cohomology is the same as

H0
Lie(g, C

sm(X)) = (Csm(X))G = C(S1).

Corollary 9.5. Two G-actions on CT (X,H) which induce the free action of
T2 on X = T 3 with quotient space Z = S1 are exterior equivalent if an obstruction
in C(S1) vanishes.

We want to put all of this together to complete the classification of G-actions on
CT (X,H) which induce the free action of T2 on X = T 3, up to exterior equivalence.
Analysis of our construction of such an action shows there was a fair amount of
freedom; we could have started instead with the action of Z2 on C(S1,K(L2(T)))
with the two generators of Z2 going to the maps

{
w 7→ multiplication by z,

w 7→ translation by f(w),

for f : T → T any map with winding number 1. (If we were to change the winding
number, we’d get another Dixmier-Douady class.) And the resulting actions are
all mutually inequivalent, even up to exterior equivalence. In fact, there is a close
relationship between maps T → T in this construction and the exterior equivalence
obstruction in C(S1). The fact that H2

M (G,C(X,T)) turns out to be a topological
vector space (and thus contractible) means in some sense that “discrete invariants”
of the noncommutative T-duals we get this way are unique, even though the group
action itself is far from unique.

Further analysis of this example leads to the following classification theorem:

Theorem 9.6 (Mathai-Rosenberg [107]). Let T2 act freely on X = T 3 with
quotient Z = S1. Consider the set of all actions of R2 on algebras CT (X,H)
inducing this action on X, with H allowed to vary over H3(X,Z) ∼= Z. Then the
set of exterior equivalence classes of such actions is parameterized by Map(Z,T).
The winding number of a map Z ∼= T → T can be identified with the Dixmier-
Douady invariant H. All these actions are given by the construction above, with f
as the “Mackey obstruction map.”

9.3. The General Case

To formulate things in greater generality, we need the following:

Definition 9.7 (Crocker-Kumjian-Raeburn-Williams [47]). LetX be a second-
countable locally compact G-space, G a second-countable locally compact group.
The equivariant Brauer group BrG(X) is the group of classes for G-equivariant
Morita equivalence over X of pairs (A,α), where A is a separable CT-algebra
with spectrum X and α is an action of G on A inducing the given G-action on
X. The group operation is given by tensor product over X with the product ac-
tion. Inverses are given by [A,α]−1 = [A◦, α◦]. There is an obvious forgetful map
F : BrG(X) → Br(X), but in general it is neither injective nor surjective.

Examples 9.8.
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(1) G = {1}, BrG(X) = Br(X) ∼= H3(X,Z).
(2) G = Z acting trivially. By the Phillips-Raeburn Theorem, Theorem 7.3,

BrG(X) ∼= H3(X,Z) × H2(X,Z), at least as a set, and one can check
that the group structure matches up also, with the forgetful map F cor-
responding to projection onto the first factor.

(3) G acting freely and properly. Then BrG(X) ∼= Br(X/G) via pull-back. In
other words, if A is a continuous-trace algebra over X/G, we can pull it
back to a continuous-trace algebra over X carrying an obvious G-action,
and all elements of BrG(X) come from this construction.

(4) G = R, X homotopically finite, the action of G on X arbitrary. Via the
Lifting Lemma, Lemma 7.5, BrG(X) ∼= Br(X) ∼= H3(X,Z).

(5) X = pt. Then BrG(pt) classifies exterior equivalence classes of actions
of G on K, which are equivalent to projective unitary representations
G → PU . From Theorem 9.4, one can deduce that BrG(pt) ∼= H2

M (G,T)
via the Mackey obstruction of a projective unitary representation (the
cohomology class measuring the obstruction to lifting a projective unitary
representation to an ordinary unitary representation).

(6) X = G/H a transitive G-space. Then BrG(G/H) ∼= BrH(pt) ∼= H2
M (H,T)

(note that we’ve used (5) in the last step), since every G-action on a
principal PU -bundle over X must be induced from the action of H on the
fiber over the identity coset 1 ·H. (This is analogous to the isomorphism
KG(G/H) ∼= R(H) from Section 5.1.1.)

Crocker-Kumjian-Raeburn-Williams [47] also provided exact sequences for com-
puting BrG(X) in terms of the topology of X and the groups Hp

M (G,C(X,T)) with
p ≤ 3. These are what one would expect if BrG(X) were a kind of equivariant
second cohomology group H2(X;G,T) à la Grothendieck [71, Ch. V], and one
had a spectral sequence converging to the equivariant cohomology, with E2 term
Hp
M (G,Hq(X,T)).2 While this doesn’t seem to be exactly true, they show that

one can check directly whatever would be predicted by such a spectral sequence, so
that it doesn’t matter.

For simplicity let’s take n = 2, G = R2. Then we can analyze Hp
M (G,C(X,T))

as in the case handled earlier, and it must vanish for p > 2. From this and [47], we
obtain:

Theorem 9.9 ([107] based on [47]). Let Z be homotopically finite, X a princi-
pal T2-bundle over Z. Let G = R2 act on X with Z2 acting trivially, and inducing
the given action of T2 with quotient space Z. Then there is an exact sequence

H2(X,Z) // C(Z)
ξ // BrG(X)

F // H3(X,Z) // 0.

Here F is the forgetful map BrG(X) → Br(X).

We can now put everything together, but first we need to review some more
topology. Again, for simplicity, let’s take n = 2. Let Z be homotopically finite,
p : X → Z a principal T2-bundle over Z. The Serre spectral sequence for p has the

2Grothendieck’s theory unfortunately doesn’t apply directly unless G is discrete, since it

doesn’t take the topology of G into account.
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following form. Here we’ve circled the terms that contribute to H3(X).

H∗(T2)

• '&%$ !"#• • • •

• •
d2

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

•• /.-,()*+•• •• ••

• //

OO

• • '&%$ !"#• • H∗(Z)

We thus have an edge homomorphism

p! : H
3(X,Z) → E1,2

∞ ⊆ H1(Z,H2(T2,Z)) = H1(Z,Z)

which turns out to play a major role.

Theorem 9.10 (Mathai-Rosenberg [107]). Let p : X → Z be a principal T2-
bundle as above, H ∈ H3(X,Z). Then we can always find a “generalized T-dual”
by lifting the action of T2 on X to an action of R2 on CT (X,H) and forming the
crossed product. When p!H = 0, we can always do this in such a way as to get a
crossed product of the form CT (X♯, H♯), where (X♯, H♯) is a classical T-dual (e.g.,
as found though the purely topological theory). When p!H 6= 0, the crossed product
CT (X,H)⋊R2 can never be even locally stably commutative, and should be viewed
instead as a noncommutative T-dual.

Though we will not go into it in the interests of saving space, the same method-
ology can also be applied to principal Tn-bundles p : X → Z with n > 2 [109]. The
one totally new phenomenon in this case is that if H has a nontrivial restriction
to the torus fibers of p, then there is no lifting at all of the action of Tn on X to
an action of Rn on CT (X,H). To prove this, it suffices to consider the case where

Z is a point and X = Tn = Rn/Zn. Since BrRn(Rn/Zn) ∼= H2
M (Zn,T) ∼= T(

n
2)

by Example 9.8(6), one just needs to compute the Dixmier-Douady invariant of
the continuous-trace algebra on Tn induced from an action of Zn on K. Since
H2
M (Zn,T) is generated by the images of H2

M (Z2,T) for maps Z2 → Zn, and since
H3(T2) = 0, one finds that the Dixmier-Douady invariant always vanishes. This
provides additional justification for the restriction in Theorem 8.3 to the case where
H restricts to be 0 on each torus fiber.

The exact relationships between the approaches to higher-dimensional T-duality
in this chapter and in Chapter 8 have been worked out by Ansgar Schneider in [146].





CHAPTER 10

Advanced Topics and Open Problems

10.1. Mirror Symmetry

So far in this book we have dealt with quite general topological spacetimes X.
But in fact most of the work in string theory assumes X = R4 × Y 6, where the
first factor is Minkowski space and Y is a compact 6-manifold with quite special
geometry. Supersymmetry considerations (see [14, Ch. 9]) make it desirable to take
Y to be a complex manifold , in fact a Kähler manifold , that is, a complex manifold
with a hermitian metric such that the complex structure J is parallel (∇J = 0), and
in fact a Calabi-Yau manifold , that is, a complex Kähler 3-fold with an everywhere
non-zero holomorphic 3-form.

There are many good references on Kähler manifolds, such as [169, 120, 11],
but we will just recall a few important facts that will be needed in what follows.

First of all, in a Kähler manifold M , the Betti numbers split up as

bn =def dimHn(M,C) =

n∑

p=0

hp,n−p,

where hp,n−p = dim{harmonic (p, n − p)-forms} = dimHn−p(M,ΩpM ). We also
have hp,q = hq,p. In a simply connected Calabi-Yau 3-fold, the Hodge numbers hp,q

have to have the specific form:

q

− 1 0 0 1

− 0 h2,1 h1,1 0

− 0 h1,1 h2,1 0
q=0

OO

1 0 0 1

• p=0 //| | | p

Another key fact is that out of the metric g and complex structure J on a
Kähler manifold, one can create a 2-form ω via ω(X,Y ) = g(JX, Y ). The fact that
∇J = 0 implies that ω is closed, and it is nondegenerate since g is, so it defines a
symplectic structure. The theory of Kähler manifolds, as we shall see, involves the
interplay of the complex and symplectic structures.

Mirror symmetry begins with the experimental observation (see Figure 10.1)
that the set of Hodge numbers of Calabi-Yau 3-folds seems to have a symmetry
interchanging h1,1 and h2,1. (The plot shows h1,1 + h2,1 plotted against the Eu-
ler characteristic 2(h1,1 − h2,1), so mirror symmetry should preserve the vertical
coordinate and change the sign of the horizontal coordinate.)

This has a deeper interpretation, since a Kähler symplectic form ω has a
de Rham class in H1,1, while H2,1 can be identified with the tangent space to
the set of deformations of the complex structure. (On a general complex manifold,
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Figure 1. A scatter plot of Hodge numbers of 1898 Calabi-Yau 3-
folds, from Kreuzer, Schimmrigk, and Skarke [99]. The horizontal
axis represents the Euler characteristic χ, the vertical axis the sum
h1,1 + h2,1. Approximate reflection symmetry of the figure reflects
mirror symmetry.

the tangent space to the set of deformations of the complex structure J can be
identified with H1(X,TX). Here TX is the sheaf of sections of the holomorphic
tangent bundle, that is, the sheaf of holomorphic vector fields. In the case of a
Calabi-Yau 3-fold, since Ω3

X is trivial, Ω2
X is dual to Ω1

M and can thus be identified
with TX , which is why we can replace H1(X,TX) by H1(X,Ω2

X), which has dimen-
sion h2,1.) Thus it is believed that “most” simply connected Calabi-Yau 3-folds M

have a mirror Calabi-Yau M̃ , such that deformations of the Kähler structure onM

correspond to deformations of the complex structure on M̃ , and vice versa. (For
an exception to this rule, see Problem (1) in Section 10.5 below.)

In fact, we expect IIA string theory on R4 ×M to be equivalent to IIB string

theory on R4 × M̃ (when the H-flux vanishes on each). This mirror relationship is

expected to be reflected in finer invariants ofM and M̃ , since the partition functions
for the two string theories reflect invariants of the Kähler structures.

In fact, if the string worldsheet Σ and the spacetime manifold X both have
Kähler structures, then holomorphic maps Σ → X are automatically harmonic,
i.e., are critical points for the sigma-model action (1.2), and for supersymmetry
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reasons, these are the solutions that really matter. So the semi-classical partition
function is gotten by summing over the holomorphic maps, and this leads to the
idea of counting holomorphic curves Σ (of a given genus) on a Calabi-Yau 3-fold
Y . (The counting has to be done in an intelligent way, since any holomorphic map
Σ → X can be composed with a holomorphic automorphism of Σ.) Such counting
functions are called Gromov-Witten invariants , and we expect them to be closely

related for Y and its mirror Ỹ .
Mirror symmetry for Calabi-Yau 3-folds is believed to be closely related to T-

duality, which we have been discussing throughout this book. In fact, Strominger,
Yau, and Zaslow (SYZ) [154], in a famous paper in 1996, claimed that a simply
connected Calabi-Yau 3-fold M should (away from some singular fibers) look like
a T3-fibration over some manifold Z (with real dimension 3), and that mirror
symmetry should arise from taking the T-dual of this torus fibration (and then filling
to get a new Calabi-Yau). The torus fibers T 3 should be special Lagrangian, i.e.,
Lagrangian1 for the symplectic structure on M , but also such that the imaginary
part of a non-zero holomorphic 3-form on M vanishes on T 3. Since the torus fibers
have odd (real) dimension, the T-duality interchanges string theories of types IIA
and IIB.

10.2. Other Solutions to the Missing T-Dual Problem

In Section 8.1, we mentioned the problem of missing T-duals in the case of
higher-dimensional torus bundles, and we discussed one possible solution [107, 109,
108] using noncommutative C∗-algebras. Without going into details, we should
point out here that various other solutions to this problem have been proposed.
Here are a few of them:

(1) In some situations, we could allow non-principal torus bundles, as well as
principal bundles. This does not seem, however, to resolve the difficulties
with Examples 8.1 and 8.2.

(2) It has been suggested [24, 59] that one should allow not only noncom-
mutative T-duals but nonassociative ones as well. This seems to permit
removing the constraint that the H-flux be trivial on each torus fiber of
the original Tn-bundle.

(3) Hull [84] has proposed allowing spacetimes which are not necessarily man-
ifolds but T-folds , or spaces locally modeled on Euclidean space but with
patching maps that can be “non-geometric” dualities. These T-folds have
been associated to certain noncommutative C∗-algebras by Bouwknegt
and Pande [26].

(4) Another approach to the problem of missing T-duals has been to try to use
“generalized geometry” in the sense of Hitchin [77]. The idea of this kind
of geometry is to treat the tangent and cotangent bundles of a manifold
on an equal basis. Generalized geometry has been used for “Poisson-Lie
T-duality” by Hu [82] and Kao [92], and figures in many other approaches
to T-duality, such as [69, 70].

(5) Still another approach to topological T-duality has been suggested in [25],
based on a duality for loop group bundles. So far, this idea has only been
applied to the case of 1-dimensional torus bundles, so it remains to be

1That means the restriction of the Kähler form ω to T 3 is identically 0.
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seen whether it can be generalized to the higher-dimensional case. The
idea is this. The approach to topological T-duality in Chapter 6 was
based on studying principal G-bundles (G = PU) over the total spaces X
of principal T-bundles over Z. It would be equivalent to study principal
bundles over Z for the group ΛG ⋊ T. (ΛG is again the free loop space
on G, which is a topological group with pointwise operations. T acts on
it by rotation in the domain of a loop.) There is a “hidden symmetry” of
(ΛG⋊T)-bundles that comes from reversing the roles of the two copies of
T, and this exchanges the momentum and winding quantum numbers, as
one would expect for T-duality. In fact, B(ΛG⋊ T) ≃ R, where R is the
Bunke-Schick classifying space of Theorem 6.3.

10.3. ✰ Fourier-Mukai Duality

10.3.1. Classical Fourier-Mukai Duality.
10.3.1.1. Derived Categories. To link the topological theories we have been

discussing with holomorphic geometry, it is necessary to introduce the idea of a
derived category , as studied by algebraic geometers.

A key notion in algebraic geometry is that of a coherent sheaf F on an algebraic
variety X, that is a sheaf of OX -modules on X which is locally finitely presented, in
that each point of X has an open neighborhood on which one has an exact sequence
Om → On → F → 0. If X is affine with coordinate ring C[X], a coherent sheaf
corresponds to a finitely generated C[X]-module. But considerations of homological
algebra make it necessary to work not just with sheaves but with complexes of
sheaves. These can be packaged together in a triangulated category , called the
derived category D(X). Objects in this category are quasi-isomorphism classes2 of
[bounded] complexes of coherent sheaves on X. The derived functors of certain
standard functors on sheaves naturally live on the derived category. The basics
of this construction can be found in [168, 41, 143] (listed in increasing order of
mathematical sophistication).

10.3.1.2. The Work of Mukai. In 1981, Mukai [121] proved a result which can
be viewed as a form of T-duality in holomorphic geometry. It is valid over arbitrary
algebraically closed fields, but for simplicity we will just state it for varieties over
C. We need to start with a few basic facts about abelian varieties (over C). These
are familiar to all algebraic geometers and to experts in several complex variables,
but perhaps not to other mathematicians.

By definition, a complex torus is a quotient X = Cn/Λ, where Λ is a lattice in
Cn ∼= R2n. Clearly this is a compact complex manifold. When n = 1, the theory of
elliptic functions shows that every complex torus of complex dimension 1 is a smooth
projective variety, called an elliptic curve, and can be realized as a subvariety of CP2

defined by a cubic equation of the form y2z = x3+ax2z+bxz2+cz3 (in homogeneous
coordinates [x, y, z]). In higher dimensions, however, not every complex torus has
enough meromorphic functions to have an embedding into projective space. One
that does is called an abelian variety , and is a smooth projective variety.

If X is an abelian variety, Pic(X), the Picard group of (holomorphic) line bun-
dles on X is both a locally compact topological group (under the tensor product

2Quasi-isomorphism is the equivalence relation on chain complexes generated by chain maps

which induce isomorphisms on cohomology.
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operation) and an algebraic variety. Its identity component, the group of topo-
logically trivial holomorphic line bundles on X, is compact and is a new abelian
variety X♯, called the dual abelian variety. It turns out to be basically the same
as the dual torus in the sense we introduced earlier. The product X ×X♯ carries a
canonical line bundle P, called the Poincaré bundle. The simplest way to define it
is to use the identification of X♯ with a group of line bundles on X. Then the fiber
of P over a point (x, x♯) in X ×X♯ is the fiber of x♯ ∈ X♯ ⊂ Pic(X) at x ∈ X.

Theorem 10.1 (Mukai [121]). Let X be a complex abelian variety. Consider
the obvious diagram

X ×X♯

πX

ww♣♣♣
♣♣
♣♣

π
X♯

''❖❖
❖❖

❖❖
❖

X X♯

and define a functor S from OX-modules to OX♯-modules by

S(F) = (πX♯)∗(P ⊗ π∗
X(F)).

Then the derived functor DS of S gives an equivalence of categories from D(X) to
D(X♯).

The functor DS of Mukai’s Theorem is called the Fourier-Mukai transform.
We need derived categories to define it since the push-forward functor on sheaves
(and hence the functor S) is not exact, and derived functors naturally live on the
derived category.

The Fourier-Mukai transform, as the name suggests, is related to the classical
Fourier transform on a locally compact abelian group G with Pontrjagin dual group

Ĝ. To take the Fourier transform of a function f on G, we pull f back to G×Ĝ and

multiply (this is like the tensor product) by the dual pairing G× Ĝ→ T, which is
formally analogous to the Poincaré bundle P. Then we push down to a function on

Ĝ by integrating out in G; this last operation is formally analogous to the (derived)
push-forward for sheaves.

10.3.2. Generalized Fourier-Mukai Duality. The theorem of Mukai has
led to a big industry and in particular to Kontsevich’s theory of homological mirror
symmetry [97]. The expectation was that mirror symmetry would be reflected
in Mukai-like equivalences of derived categories. This expectation has now been
partially realized:

Theorem 10.2 (Orlov [125, 144, 87]). Any equivalence of categories from
D(X) to D(Y ) (X and Y smooth projective varieties) comes from a Mukai-like
functor (pull-back, then tensor, then push forward).

Theorem 10.3 ([39, Corollary 3.1.13 and Proposition 3.1.14]). If X and Y
are simply connected Calabi-Yau 3-folds and if there is an equivalence of categories
from D(X) to D(Y ), then X and Y have the same Hodge numbers h1,1 and h2,1.

Theorem 10.4 (Bridgeland [27], later extended by Kawamata [96]; see also
[144, 87]). If X and Y are birationally equivalent Calabi-Yau 3-folds, then D(X)
and D(Y ) are equivalent.

(Caution: Current evidence [42] is that the converse of this is likely to be false;
i.e., if X and Y are Calabi-Yau 3-folds, then D(X) and D(Y ) could be equivalent
without X and Y being birationally equivalent.)
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You might wonder what happened to mirror symmetry in all this, since Mukai-
like equivalences only occur between Calabi-Yau 3-folds with the same Hodge num-
bers, and mirror symmetry involves flipped Hodge numbers h1,1 ↔ h2,1. Thus, ex-
cept perhaps for the rare case when h1,1 = h2,1, mirror Calabi-Yau 3-folds cannot
have equivalent derived categories of coherent sheaves.

The first part of the story is that Mukai duality is related to T-duality between
a complex torus and its dual, or more generally, for torus fibrations with even-
dimensional fibers. (A complex torus has even dimension as a manifold over R.)
This kind of T-duality sends types IIA and type IIB back to themselves. Mirror
symmetry, on the other hand, comes from T-duality for a torus fibration with odd-
dimensional fibers, which interchanges types IIA and type IIB.

The second part of the story comes from an observation of Kontsevich [97, 98],
namely that string theory of type IIA and string theory of type IIB really involve
two different derived categories. If X is a Calabi-Yau 3-fold, Type IIB string theory
on R4×X is indeed related to the derived category D(X) of coherent sheaves from
algebraic geometry, whereas type IIA string theory on R4×X is related to a differ-
ent derived category, the Fukaya category F (X) constructed out of the symplectic
geometry of X and Lagrangian submanifolds. A (very abbreviated) explanation
is that in type IIB string theory, the stable D-branes are basically complex sub-
varieties of X, or something very close to this. (Any subvariety gives a coherent
sheaf in a natural way, and a coherent sheaf can be viewed as a generalized complex
subvariety.) Thus the D-brane charges take their values in the even-dimensional
group K0(X), and D(X) is the correct object for studying the finer (holomorphic)
structure of the D-branes. In type IIA string theory, on the other hand, the stable
D-branes are odd-dimensional. Thus the D-brane charges take their values in the
odd-dimensional group K1(X). The Fukaya category, which probes the geometry
of Lagrangian submanifolds (which are 3-dimensional), is now relevant.

Conjecture 10.5 (Kontsevich [97, 98]). If X and Y are mirror Calabi-Yau
3-folds, then D(X) is equivalent to F (Y ), and D(Y ) is equivalent to F (X).

This is now known in some cases, but making rigorous sense of F (X) has proved
difficult.

10.3.3. Noncommutative Extensions.
10.3.3.1. The Work of Căldăraru and of Ben-Basset, Block, and Pantev. The

success of Fourier-Mukai duality in capturing the algebraic geometry aspects of T-
duality raises the question of whether there is something similar to Fourier-Mukai
that is related to topological T-duality with H-flux or to the Mathai-Rosenberg
noncommutative T-duality between T 3 with nontrivial H-flux and the C∗-algebra
of the discrete Heisenberg group.

Some results of this type were obtained by Căldăraru in his thesis [39, 40].
He obtained examples of Calabi-Yau 3-folds X with an “elliptic fibration” over a
smooth surface S (that is, a map X → S whose generic fibers are elliptic curves)
such that D(X) is equivalent to D(X ′, α), for X ′ another Calabi-Yau (also with an
elliptic fibration over S) and α an element of the (algebraic) Brauer group of X ′.
Note that this is highly reminiscent of T-duality with H-flux (since the H-flux can
be thought of as a Brauer group element) for torus fibrations with 2-dimensional
fibers (since elliptic curves are topologically T 2).
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A theory much closer to the results of Chapter 9 was developed by Ben-Basset,
Block, and Pantev [15]. They start with classical Mukai duality between D(X)
and D(X♯), X a complex abelian variety.

Next, since essentially all kinds of deformation theory can be expressed in terms
of Hochschild cohomology in degree 2 [168, Ch. 9], they observe that the Hochschild
cohomology HH2(X) splits as:

HH2(X) ∼= H0(X,
∧2
TX)⊕H1(X,TX)⊕H2(X,OX).

(The definition of Hochschild cohomology for varieties, as well as the derivation of
this decomposition, are explained in [156] and in [41, §6]. For an affine variety,
HH•(X) is simply the Hochschild cohomology of the coordinate ring.)

The three terms H0(X,
∧2
TX), H1(X,TX), and H2(X,OX) each have inter-

pretations in terms of different kinds of deformations. H1(X,TX) is the tangent

space to the deformations of the complex structure on X. H0(X,
∧2
TX), or in

other words, the space of global alternating holomorphic bivector fields, classifies
holomorphic Poisson structures.3 In the case of an abelian variety, TX is holomor-
phically trivial, so

∧2
TX is just a holomorphically trivial bundle of dimension

(
n
2

)
,

n the complex dimension of X, and since global holomorphic functions are constant,
the integrability condition is automatically satisfied. Poisson structures give rise
to deformation quantizations of X, or Moyal products or star-products. These are
noncommutative formal associative multiplications

f ⋆ g = fg +

∞∑

j=1

Pj(f, g)~
j ,

where Pj(f, g) is bilinear in f and g and is a differential operator in each, and where
we have the familiar “correspondence principle” of quantum mechanics:

lim
~→0

f ⋆ g − g ⋆ f

i~
= −i

(
P1(f, g)− P1(g, f)

)
= {f, g}.

In the case of the usual symplectic structure on T 2, the Moyal product can be taken
to be the formal series expansion of the multiplication in the irrational rotation
algebra Aθ, with θ playing the role of Planck’s constant ~. Finally, H2(X,OX)
classifies (holomorphic) gerbe deformations, which are reminiscent of CT-algebras.
The reason is that classes of holomorphic gerbes (see Section 4.3 and the references
quoted there) can be identified with elements of H2(X,O×

X). From the short exact
sequence of sheaves

0 → Z
2πi−−→ OX

exp−−→ O×
X → 1

we obtain the long exact cohomology sequence

H2(X,OX)
exp−−→ H2(X,O×

X)
∂−→ H3(X,Z),

in which the connecting map ∂ sends a gerbe to its Dixmier-Douady class. So
H2(X,OX) maps to deformations of a gerbe (not changing the Dixmier-Douady
class).

3Recall that a Poisson structure on a manifold is given by skew-symmetric Poisson bracket
on functions. Such a bracket has to be of the form {f, g} = 〈df ∧ dg,Π〉, for Π an alternating
bivector field. An additional integrability condition is required for the bracket to satisfy the Jacobi

identity. For compatibility with the complex structure, we also want Π to be holomorphic.
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Now let V be the holomorphic tangent space to X at 0. Since the sheaves Ω∗
X

and
∧∗

TX are all trivial, we can identify H0(X,
∧2
TX) with

∧2
V and H2(X,OX)

with
∧2
V ♯, where V ♯ is the holomorphic tangent space to the dual torus X♯ at 0.

So the duality X ↔ X♯ interchanges these two spaces, and a holomorphic Poisson
structure Π on X corresponds to an element of H2(X♯,OX♯) defining a gerbe on
X♯. We now have the ingredients needed for the following theorem.

Theorem 10.6 (Ben-Basset-Block-Pantev [15]). Suppose that X is a g-dimen-
sional complex torus equipped with a holomorphic Poisson structure Π. Let XΠ be

the corresponding Moyal quantization, and let X♯
Π♯ be the dual OX♯-gerbe on X♯.

Then there is an equivalence of categories between D(XΠ) and D(X♯
Π♯) given by a

Fourier-Mukai-like functor.

10.3.3.2. The Work of Daenzer, Block, and Block-Daenzer. Theorem 10.6 has
motivated additional work by Daenzer [50], Block [18, 17], and by Block and
Daenzer [19]. Daenzer’s setting involves topological groupoids and their crossed
products. This theory fits well with our C∗-algebraic approach in Chapter 9, and
basically gives equivalent results, but generalizing to groups other than tori and to
the situation where the base space Z is replaced by a topological stack rather than
a topological space. (For motivation as to why one might want to use groupoids
and stacks in string theory, see for example [151, 152].)

In the papers [18, 17], Block uses differential graded categories, or DG-categor-
ies, to state and prove a non-formal version of the theorem of Ben-Basset, Block
and Pantev. This framework is an attempt to bring the noncommutative geometry
of Connes and the approach using derived categories closer together. The approach
using DG-categories is motivated by the observation that the structure of a complex
manifold X is encoded in its Dolbeault complex, and [18, Proposition 2.22] states
that from this complex one can define a DG-category which encodes all the structure
of the derived category D(X). The paper [17] goes on to use this idea to find a
substitute for the derived category in the case of noncommutative tori. The work of
Block and Daenzer [19] then attempts to extend the framework to handle general
gerbes with connection. In other words, Block and Daenzer look for an analogue of
a Fourier-Mukai transform for gerbes and noncommutative spaces. This uses the
machinery of [18, 17]. Their final result is that a gerbe with flat ∂-connection on
a torus is dual to a holomorphic noncommutative dual torus, as one might expect
from Theorem 10.6.

10.3.3.3. The Work of Bunke, Schick, Spitzweck, and Thom. Bunke, Schick,
Spitzweck, and Thom [36] gave another version of categorical duality related to
topological T-duality and noncommutative geometry. The formulation is very pow-
erful but abstract, and involves Grothendieck topologies and stacks. This work is
far beyond the scope of this book, but interested readers should be aware of it.
Essentially, they construct a very general version of topological T-duality via Pon-
trjagin duality of Picard stacks over a Grothendieck site S of (compactly generated)
topological spaces. An important role is played by sheaves over S, such as the sheaf
T with T(U) = C(U,T), the continuous maps from U into T. The dualizing ob-
ject for Pontrjagin duality turns out to be BT, the sheafification of the presheaf
U 7→ BC(U,T). In fact any Picard stack A in Pic S is an extension of sheaves

BH−1(A) A։ H0(A)
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and Pontrjagin duality reverses the roles of H0(A) and H−1(A). The idea of [36]

is that out of a pair (X
π−→ Z,H) as in Theorem 8.3, π a principal Tn-bundle, first

one can view H as classifying a gerbe with band T, or in other words a map of
stacks G → X which is locally isomorphic to BT|X → X. (This is really fancy

language for a PU -bundle over X.) One can try to manufacture a “Picard stack”

U out of this data, then take the Pontrjagin dual Û = HomPic S(U,BT), and then
recover the topological T-dual from this. The Picard stack U is basically a torsor
(like a principal homogeneous space) for the Picard stack (BT × Tn)|X (the first
factor corresponding to the H-flux and the second factor to the Tn-bundle), but
for technical reasons it is defined to be an extension of Picard stacks

(BT× Tn)|X → U → Z|X .
This is the object to which one applies Pontrjagin duality. But exact definitions of
all the relevant notions are much too complicated for us to give here. Incidentally,
the idea of a Picard stack is rather hard to extract from the original sources in the
algebraic geometry literature, so a good concise reference is [170, Appendix A].

10.4. ✰ Refinements of K-Theory

In this section, we discuss an idea which has recently surfaced in the physics
literature, namely that K-theory is not exactly the right mathematical formalism
for studying D-brane charges in string theory, and that perhaps certain refinements
are needed. This idea may be found, for example, in [52] and [60, §8], where two
specific issues are discussed:

(1) Problems coming from the Hodge ∗-operator. The Ramond-Ra-
mond fields in type II string theory are generally assumed to be repre-
sented by differential forms. Electric-magnetic duality [14, §6.2] relates
these forms to their Hodge-∗ duals. Since the forms couple to the charges,
some additional constraints arise, and it is not clear that the K-theoretic
classification of charges takes this into account, especially in the case of
self-dual fields in middle dimension.

(2) Problems coming from S-duality. This area of research has been
suggested in [61, 21, 100, 102, 101]. While, as we have tried to demon-
strate throughout this book, T-duality seems to be consistent with the
K-theoretic classification of D-brane charges, it is not clear that the same
holds for S-duality. For example, in [61], it is argued that studying S-
duality on RP3 ×RP5 × S2 (with torsion H-flux) leads to a Freed-Witten
anomaly on the S-dual. One possibility, discussed in [100, 102, 101], is to
replace (twisted) K-theory by (twisted) more exotic cohomology theories,
such as elliptic cohomology [160] or tmf (“topological modular forms”)
[80]. These theories are related to K-theory, but are slightly more com-
plicated, and seem to have something to do with “higher orientability” of
spacetime or D-branes, that is, with (twisted) String or Fivebrane struc-
tures [145]. A manifold can be given a String structure, or lifting of the
structure group of its tangent bundle to the connective cover of the or-
thogonal group obtained by killing π3(O), if it is spin and 1

2p1, half the

first Pontrjagin class, vanishes. (Note that 1
2p1 makes sense as an integral,

possibly torsion, cohomology class for spin manifolds.) It has a Fivebrane
structure if there is a lifting of the structure group of its tangent bundle
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to the next connective cover of the orthogonal group obtained by killing
π7(O), or if it has a String structure and 1

6p2 vanishes. Such structures
are related to orientability for certain exotic cohomology theories as men-
tioned above. (See [80] or for example [4, 5].) This is a very active area
of research described in some of the other lectures at the conference, but
it would take us too far afield to go into details.

10.5. Open Problems

We conclude by listing a number of open problems related to some of the ideas
we have discussed in this book.

(1) Does the notion of noncommutative T-duals, introduced in Chapter 9,
help explain missing mirrors, just it explains “missing T-duals”? Missing
mirrors come up when one has a simply connected Calabi-Yau Y whose
complex structure is infinitesimally rigid, i.e., for which h2,1(Y ) = 0. In

this case there cannot be a mirror Calabi-Yau Ỹ , since one would have to

have h1,1(Ỹ ) = 0, so that Ỹ could not be Kähler.
(2) The SYZ construction [154] and also other constructions studied by physi-

cists require T-duality for generalized torus fibrations with some isotropy
(fibers on which the torus doesn’t act freely) or even degenerate fibers
(where the torus doesn’t act at all). How can one extend the results
on topological T-duality to these situations? Some work has been done
in this direction already, but only in very special cases. For example,
Bunke-Schick [35] considered the case of locally free actions, and Pande
[127] considered the case of T-actions with isolated fixed points, known
as Kaluza-Klein monopoles in the physics literature.

(3) (suggested by Jacques Distler at the conference) In the physics literature,
there are reasons for sometimes taking spacetime to be an orbifold instead
of a manifold.4 Can one redo the theory in this book in this generality?
A first step would be to show that one can make topological T-duality, at
first for S1-bundles, equivariant for an action of a finite group.

(4) We have discussed how matching of K-theoretic D-brane charges imposes
constraints on topological T-duality. Similar considerations should apply
to other dualities in string theory, as well as to the AdS/CFT correspon-
dence. Work out the consequences, and see to what extent noncommuta-
tive techniques can be used! (My student Stefan Mendez-Diez has been
working on this.)

(5) Recently, Echterhoff, Nest and Oyono-Oyono [58] gave a definition of
“principal noncommutative torus bundles” which includes the noncommu-
tative T-duals we found in Chapter 9, but not all of the classical examples.
So ideally, one should try to find a good category for topological T-duality
that includes both the category in Theorem 8.3 and the Echterhoff-Nest-
Oyono-Oyono category. Then one should try to extend the topological
duality theory to this bigger category. What happens with the T-duality
group in this context? Does it make any sense in terms of symmetries of
the bigger category?

4An orbifold is a space with local charts, like a manifold, but where the local model spaces

are quotients of a finite-dimensional Euclidean space by an orthogonal action of a finite group.
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introduction to the Langlands program, Birkhäuser Boston Inc., Boston, MA, 2003, Lectures
presented at the Hebrew University of Jerusalem, Jerusalem, March 12–16, 2001, Edited by

Joseph Bernstein and Stephen Gelbart. MR1990371 (2004g:11037)
33. Ulrich Bunke, Philipp Rumpf, and Thomas Schick, The topology of T -duality for Tn-bundles,

Rev. Math. Phys. 18 (2006), no. 10, 1103–1154, arxiv.org: math.GT/0501487. MR2287642
(2007k:55023)

34. Ulrich Bunke and Thomas Schick, On the topology of T -duality, Rev. Math. Phys. 17 (2005),
no. 1, 77–112, arxiv.org: math.GT/0405132. MR2130624 (2006b:55013)

35. , T -duality for non-free circle actions, Analysis, geometry and topology of elliptic
operators, World Sci. Publ., Hackensack, NJ, 2006, arxiv.org: math.GT/0508550, pp. 429–

466. MR2246781 (2008f:81181)
36. Ulrich Bunke, Thomas Schick, Markus Spitzweck, and Andreas Thom, Duality for topological

abelian group stacks and T -duality, K-Theory and Noncommutative Geometry (Valladolid,
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Notation and Symbols

α′ Regge slope parameter in string theory, corresponding to the square
of the typical string length, page 4

βX Stone-Čech compactification of X, page 27
δS variation of S, page 8
∇ directional derivative operator of connection, page 16
Φ dilaton field in string theory, page 10
Γ(X,E) sections of a bundle or sheaf over X, page 16
Γ∞(X,E) smooth sections of a bundle over X, page 16
ΛX free loop space on a space X, page 59
ΩpM sheaf of holomorphic p-forms on a complex manifold M , page 85
ΩX based loop space of a based space X, page 59
πj j-th homotopy group, page 18
ρ Phillips-Raeburn invariant, page 65
Σ string worldsheet, page 3
⊙ uncompleted tensor product of C∗-algebras, page 28
⊗ spatial tensor product of C∗-algebras, page 28∧p

pth exterior power, page 91

Â spectrum of a C∗-algebra A, page 37
A+ positive elements in a C∗-algebra A, page 27
Aθ rotation algebra with unitary generators U and V satisfying UV U∗ =

e2πiθV , page 53
A⋊α G crossed product of A by an action α of G, page 34
A◦ opposite algebra to A, page 39
AutA automorphism group of a C∗-algebra A, page 33
B gauge bundle of a principal bundle, page 64
B sheafified classifying space, page 92
B B-field, page 4
BG classifying space of a topological group G, the quotient EG/G, where

EG is (weakly) contractible and G acts freely and properly on it
bn n-th Betti number, page 85
Br Brauer group (of a field, commutative ring, or space), page 39
BrG equivariant Brauer group of a G-space, page 81
C the complex numbers
c the speed of light in vacuum, page 3
c(E) total Chern class of E, page 15
Ch Chern character, page 18
cj(E) j-th Chern class of E, page 15
C(X) continuous functions on X, page 22
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104 Notation and Symbols

C0(X) continuous functions vanishing at infinity on a locally compact space
X, page 27

C(X,T) continuous functions X → T, page 67
D(X) derived category of coherent sheaves on X, page 88
[E] K-theory class of a vector bundle E, page 18
f! Gysin map in K-theory, page 22
Fq the finite field with q elements
G sheaf of germs of G-valued continuous functions, G a topological

group, page 14
G Newton’s graviational constant, page 3
G0 connected component of the identity in a topological group G, page 31
Gal(E/F ) Galois group of E over F , page 39
GL(A) stable general linear group of A, page 31
GL(n,A) group of invertible elements in Mn(A), page 31
Gm group scheme of the multiplicative group, page 39
Gr Grassmannian, page 14
gS string coupling constant, page 10
gYM Yang-Mills coupling constant, page 11
~ Planck’s constant divided by 2π, page 3
H H-flux, page 4
H• ordinary cohomology, or sometimes Čech cohomology
H•

ét étale cohomology in algebraic geometry, page 39
HH•(X) Hochschild cohomology of a variety X, page 91
H•

Lie(g, V ) Lie algebra cohomology of a Lie algebra g with coefficients in a g-
module V , page 79

H•
M (G,A) Moore cohomology of a locally compact group G with coefficients in

a Polish module A, page 79
Homeo(X) homeomorphism group of X, page 63
hp,q Hodge number of a complex manifold, page 85
IndGH A induced algebra, page 52

IndGH ρ induced representation, page 34
Inn(A) inner automorphism group of a C∗-algebra A, page 65
J complex structure on a complex manifold, page 85
K(H) compact operators on a Hilbert space H (often the H is suppressed if

dimH = ℵ0), page 27
K(X) Grothendieck group of vector bundles on X, page 18
K∗(X) topological K-theory of X, page 19
K0(A) Grothendieck group of finitely generated projectiveA-modules, page 30
K∗(A) topological K-theory of A, page 33
KG

∗ (A) equivariant topological K-theory of A, page 47
K(G,n) Eilenberg-Mac Lane space with πn ∼= G, page 38
KK(A,B) Kasparov KK-group, page 22
L Lagrangian in a physical theory, page 1
L(H) bounded linear operators on a Hilbert space H, page 27
lim−→ inductive limit of groups or algebras, page 31
lP Planck length, page 3
Mn the n× n matrices (over C if not otherwise stated)
M(A) multiplier algebra of a C∗-algebra A, page 27
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Map(X,Y ) space of continuous maps X → Y , page 15
N the natural numbers, {n ∈ Z | n ≥ 0}
On Cuntz algebra generated by n isometries, page 53
OX structure sheaf of an algebraic variety X, page 88
Pn projective n-space
P Poincaré bundle, page 89
p! Gysin map for a principal S1-bundle p, page 57
Pic Picard group of line bundles (either topological or holomorphic, de-

pending on context), page 14
PU projective unitary group (of a separable infinite-dimensional Hilbert

space, unless otherwise specified), page 38
Q the rational numbers
R the real numbers
R× multiplicative group of invertible elements in a ring R, page 14
R(G) the ring of virtual finite dimensional representations of a compact

group G, page 47
S a suitable site of topological spaces, page 92
S Schwartz space of rapidly decreasing functions, page 9
S action in a physical theory, page 1
SpecA the scheme defined by a commutative ring A, page 39
Sqj j-th Steenrod square, page 20
T the unit circle in the complex plane, with its multiplicative abelian

group structure
tmf topological modular forms exotic cohomology theory, page 93
TorRn (A,B) Tor groups of homological algebra, page 41
Tr trace (of a positive or trace-class operator), page 37
TX sheaf of holomorphic vector fields on a complex manifold X, page 86
U(A) unitary group of a C∗-algebra A, page 51
U(H) unitary group of a Hilbert space H, page 38
U(n) group of n× n unitary matrices, page 15
W3 integral Stiefel-Whitney class in H3, page 42
wj j-th Stiefel-Whitney class, page 41
X+ one-point compactification of X, page 19
[X,Y ] homotopy classes of maps X → Y , page 15
Z the usual integers
Z partition function in statistical mechanics or quantum field theory,

page 3
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abelian variety, 88

dual, 89

action, 1

Einstein-Hilbert, 2

least, 1, 2

of a group on a C∗-algebra, 34

Polyakov, 4

Yang-Mills, 2, 11

adjoining an identity, 25, 26, 30, 32

Aharonov-Bohm effect, 3

amenable group, 29, 51

amplitude, 2

anomaly, 5, 93

anti-de Sitter space, 10, 11

antibrane, 21

Atiyah-Hirzebruch spectral sequence, 20,

41, 42, 49, 56

Azumaya algebra, 39

B-field, 4, 46

back-formation, 5

Banach ∗-algebra, 25
Banach algebra, 25

band, 93

Baum-Connes Conjecture, 51

Betti number, 85

bivector, 91

Borel construction, 59

boson, 4

Bott periodicity, 19, 33, 47

bounded operators, 27

brane, 5

Brauer group, 39, 90

equivariant, 81, 82

Brown Representability Theorem, 59

bundle gerbe, see gerbe

Bunke-Schick Theorem, 58, 72

Buscher rules, 8, 55

C∗ dynamical system, 34

C∗-algebra, 25

nuclear, 29

Calabi-Yau manifold, 85, 90

Čech cohomology, 14, 40

Chan-Paton bundle, 21, 22

charge

D-brane, 21, 93

electric, 21

in K-homology, 23

in K-theory, 22, 93

quantization of, 21

Chern character, 18

Chern class, 15, 21

Chern-Weil theory, 2, 16, 42

chirality, 6

classifying space, 15, 58, 59

closed string, 5

clutching, 55

cocycle

Čech, 14

automatic continuity of, 79

unitary, 51

coherent sheaf, 88

compact operators, 27

complex manifold, 85

conformal field theory, 10

connection, 1, 16, 67

gerbe, 45

Connes’ Thom isomorphism, 51, 53, 63, 77

continuous-trace algebra, 38, 44

contractible Banach algebra, 32, 49

correspondence principle, 91

covariant pair, 34

cross-norm, 28

crossed product, 34

K-theory of, 48

reduced, 51

CT-algebra, see continuous-trace algebra

Cuntz algebra, 53

cup product, 18

curvature, 16, 45

curving, 45

D-brane, 5, 11

deformation

gerbe, 91

of complex structure, 85, 91

of Kähler structure, 86
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of multiplication, 91
quantization, 91

derivation, 52
derived category, 88
derived functor, 88, 89
DG-category, 92
diffraction, 3
dilaton, 10
discrete Heisenberg group, 78
Dixmier-Douady class, 38, 42, 43, 65, 66,

68, 91
Dixmier-Douady form, 45
Dixmier-Douady invariant, 40, 78, 83
duality, 7

AdS/CFT, 10, 11
electric-magnetic, 7, 9, 93
Fourier, 7
Langlands, 7, 9
Montonen-Olive, 7
Pontrjagin, 35
S-, see S-duality
T-, see T-duality
Takai, see Takai duality
U-, see U-duality

Eilenberg swindle, 30
Eilenberg-Mac Lane space, 38
Eilenberg-Steenrod axioms, 19
Einstein’s equation, 2
electron, 4

charge of, 9, 21
elliptic cohomology, 93
elliptic curve, 88, 90
equations of motion, 1
equivariant K-theory, see K-theory,

equivariant

étale cohomology, 39
Euclidean signature, 2
Euler-Lagrange equation, 1
expectation value, 3
exterior equivalence, 51

F-theory, 10
Fell topology, 37

Fermat’s theory of optics, 1

fermion, 4, 22

fermion algebra, 53

field, 1

B-, see B-field
electromagnetic, 21

gauge, 1, 2

Ramond-Ramond, 6, 93

scalar, 1

vector, 1
field strength, 2, 21

Fivebrane structure, 93

fixed set, 49

Fourier transform, 8, 89

Fourier-Mukai transform, 89, 92

frame bundle, 44

Fredholm module, 22

free loop space, 59, 73

Fukaya category, 90

Galois cohomology, 39

gauge bundle, 64

gauge field, 1, 6, 7, 21

gauge group, 6, 7, 64

Gauss’s Law, 21

generalized geometry, 87

gerbe, 38, 42, 91, 93

Grassmannian, 14, 18

gravity, 2, 4

Green Imprimitivity Theorem, 52, 78

Green-Julg Theorem, 48

Gromov-Witten invariant, 87

Grothendieck group, 18, 30

Grothendieck topology, 92

Grothendieck-Serre Theorem, 39

group completion, 18, 30

Gysin map, 57, 58, 62, 68

Gysin sequence, 57

H-flux, 4, 38, 46

harmonic oscillator, 7

Heisenberg nilmanifold, 71

Heisenberg uncertainty principle, 2, 8

Hermite functions, 8

hermitian metric, 16

heterotic string

E8, 6

SO(32), 7

Hochschild cohomology, 91

Hodge ∗-operator, 93
Hodge numbers, 85

Hodgkin spectral sequence, 41, 54

homotopy invariance, 31, 32

homotopy sequence

of fibration, 18, 41, 74

Hopf fibration, 55

Hurewicz Theorem, 41

ideal

essential, 27

maximal modular, 28

prime, 49

idempotent, 16, 31, 33

induced action, 52, 77

induced algebra, 48, 52

induced representation, 34

inductive limit, 33, 53

instanton, 6

integration along the fibers, 58

irrational rotation algebra, 53, 91

K-homology

analytic, 22

geometric, 22
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k-invariant, 58, 59, 73

K-theory

equivariant, 41, 47

of a ring, 30

topological, 19, 33

twisted, 40

with compact supports, 19, 30

Kähler manifold, 85

Kaluza-Klein monopole, 94

Kasparov theory, 22

KK-theory, 22

Klein bottle, 6

Lagrangian, 1

effective, 11

Lagrangian submanifold, 87, 90

Langlands dual, 7, 9

Langlands program, 7

least action, see action, least

Lie algebra cohomology, 79

lifting, 64, 66

line bundle, 14, 16

local coefficients, 40

loop group, 87

Lorentz metric, 2

M-theory, 10, 78

Mackey obstruction, 82

Mackey Imprimitivity Theorem, 34, 35, 52

magnetic monopole, 9

mapping torus, 52

metric

hermitian, see hermitian metric

Lorentz, see Lorentz metric

Riemannian, see Riemannian metric

Millikan oil drop experiment, 21

Minasian-Moore formula, 22

mirror symmetry, 85

homological, 89

missing mirror, 94

monodromy, 70

Moore cohomology, 79

Morita equivalence, 28, 29, 33, 35

characterization of, 29

Morita invariance

of K∗ for C∗-algebras, 33

of K0, 31

Morita’s Theorem, 28

Moyal product, 91

Mukai’s Theorem, 89

multiplier algebra, 27, 51

Neveu-Schwarz sector, 6

non-geometric spacetime, 87

nonassociative algebra, 87

noncommutative T-dual, 78

observable, 2, 27

open string, 5

orbifold, 94

orientable, 6

partition function, 3, 9

path integral, 3

Pauli exclusion principle, 4

perturbation theory, 10

Phillips-Raeburn Theorem, 65, 67

photon, 4

Picard group, 14, 88

Picard stack, 92

Pimsner-Voiculescu sequence, 52, 53

Planck length, 3

Planck’s constant, 3, 91

Poincaré bundle, 89

Poincaré duality, 23, 40, 41

Poisson bracket, 91

Poisson structure, 91

Poisson summation formula, 9

Polish group, 79

Pontrjagin duality, 35, 89, 92

positive (in a C∗-algebra), 27

Postnikov tower, 58, 59, 72, 74, 75

principal bundle, 1

product

in K-theory, 18

projection, 16, 33, 37

projective module, 29

quantum field theory, 3

quantum mechanics, 2, 7, 8, 25, 91

Raeburn-Rosenberg Theorem, 68

Ramond sector, 6

Ramond-Ramond charges, 42

Ramond-Ramond fields, 6, 93

rank, 14

Regge slope, 4

relativity

general, 2

representation ring, 47

Riemannian metric, 2

rigid, 94

rotation algebra, 53

S-duality, 9–11, 93

Schrödinger representation, 8

sector, 6

self-adjoint, 27

Serre spectral sequence, 58, 74, 82

Serre-Swan Theorem, 30

sheaf, 14, 40, 42, 65

coherent, 88

sigma model

nonlinear, 4

site

Grothendieck, 92

Snell’s law, 2

special Lagrangian submanifold, 87
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spectral radius, 26

spectral sequence

Atiyah-Hirzebruch, see

Atiyah-Hirzebruch spectral sequence

Hodgkin, see Hodgkin spectral sequence

Serre, see Serre spectral sequence

spectrum, 25, 37

spinc structure, 22, 23, 40–42, 44

spinor, 1, 4

Splitting Principle, 15

stable isomorphism, 29

stack, 92

star-product, 91

state, 2, 27

stationary phase, 3

Steenrod homology, 23

Stiefel-Whitney class, 41, 42

Stone-Čech compactification, 27

Stone-von Neumann-Mackey Theorem, 35,
52

string, 3

string coupling constant, 10, 11

string landscape, 71

String structure, 93

string theory, 3

supergravity, 10

supersymmetry, 4, 6, 85

symmetry breaking, 15

symplectic manifold, 85

system of imprimitivity, 34

T-dual

missing, 71, 72

T-duality, 8, 9, 55

group, 71

noncommutative, 78

topological, 57

T-fold, 87

Takai duality, 36, 54, 65

tensor product

maximal, 29

of vector bundles, 13

spatial, 28, 32

theta function, 9

topological modular forms, 93

topology

Grothendieck, 92

torsor, 93

torus

complex, 88

dual, 8

noncommutative, 53

trace

continuous, see continuous-trace algebra

function, 37

transition functions, 14

triangulated category, 88

twisted K-theory, see K-theory, twisted

type I, 6
type IIA, 6, 90
type IIB, 6, 11, 90

U-duality, 10
UHF algebra, 50, 53
unital, 25
unitary, 27

Van Est’s Theorem, 79
vector bundle, 13

G-, 47

operations, 13

wave function, 2
Wedderburn’s Theorem, 39
Wess-Zumino term, 4, 38, 45, 46, 55
Wess-Zumino-Witten model, 5, 45
Wick rotation, 2
Wigner’s Theorem, 79
worldline, 21
worldsheet, 3
WZW model, 5, 45

Yang-Mills theory, 2, 11


