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Programmable Extreme Pseudomagnetic Fields in Graphene by a Uniaxial Stretch

Shuze Zhu,1 Joseph A. Stroscio,2 and Teng Li1,*
1Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA

2Center for Nanoscale Science and Technology, NIST, Gaithersburg, Maryland 20899, USA
(Received 24 September 2015; published 8 December 2015)

Many of the properties of graphene are tied to its lattice structure, allowing for tuning of charge carrier
dynamics through mechanical strain. The graphene electromechanical coupling yields very large
pseudomagnetic fields for small strain fields, up to hundreds of Tesla, which offer new scientific
opportunities unattainable with ordinary laboratory magnets. Significant challenges exist in investigation of
pseudomagnetic fields, limited by the nonplanar graphene geometries in existing demonstrations and the
lack of a viable approach to controlling the distribution and intensity of the pseudomagnetic field. Here we
reveal a facile and effective mechanism to achieve programmable extreme pseudomagnetic fields with
uniform distributions in a planar graphene sheet over a large area by a simple uniaxial stretch. We achieve
this by patterning the planar graphene geometry and graphene-based heterostructures with a shape function
to engineer a desired strain gradient. Our method is geometrical, opening up new fertile opportunities of
strain engineering of electronic properties of 2D materials in general.

DOI: 10.1103/PhysRevLett.115.245501 PACS numbers: 61.48.Gh

Being able to influence the motion of charge carriers,
strain-induced pseudomagnetic fields in graphene have
been explored as a potential approach to engineering the
electronic states of graphene. There has been experimental
evidence of enormous pseudomagnetic fields (up to 300 T)
in locally strained graphene nanobubbles [1] and graphene
drumheads [2], which inspires enthusiasm in exploring the
abundant potential of strain engineering of graphene, as
well as charge carrier behavior under extreme magnetic
fields that otherwise do not exist in normal laboratory
environments [3–9]. Enthusiasm aside, there exist signifi-
cant challenges that hinder further explorations of these
fertile opportunities to full potential. For example, existing
experiments demonstrate pseudomagnetic fields in highly
localized regions of graphene with a nonplanar morphology
[1,2], which poses tremendous challenge for experimental
control and characterization of the resulting fields. Further
challenge originates from the dependence of the symmetry
of the strain-induced pseudomagnetic field on the strain
gradient in graphene. As a result, an axisymmetric strain
field in graphene leads to a pseudomagnetic field of
rotational threefold symmetry [2,4–7]. By contrast, a uni-
form pseudomagnetic field in a planar graphene with
tunable intensity is highly desirable for systematic inves-
tigations [10]. In principle, such a uniform pseudomagnetic
field can be achieved by introducing a strain field of
threefold symmetry in graphene [4,8], which requires
equal-triaxial loading of atomically thin graphene, a tech-
nical challenge already prohibitive in bulk materials. So far,
a viable solution to generate a pseudomagnetic field in
graphene with controllable distribution and amplitude over
a large planar area under a feasible loading scheme still
remains highly desirable but elusive.

The ever-maturing programmable patterning [11–22] and
functionalization [23–30] of graphene has enabled a class of
graphene-based unconventional nanostructures with excep-
tional functionalities, such as nanoribbon [31], nanomesh
[16] and hybrid superlattices [23]. Significant progress has
also been made on fabricating high quality in-plane hetero-
epitaxial nanostructures that consist of different monolayer
two-dimensional (2D) crystals, such as graphene, hydro-
genated graphene (graphane) and hexagonal boron nitride
(h-BN) [32–35]. Furthermore, controllable and nondestruc-
tive generation of uniaxial strains (up to more than 10%) in
graphene has been successfully demonstrated recently [36].
Motivated by these advances, here we reveal a feasible and
effective mechanism to achieve programmable pseudomag-
netic fields in a planar graphene by a simple uniaxial stretch.
We demonstrate two new possible approaches. (i) Tailoring
the planar edge geometry of a graphene strip, and (ii) pat-
terning in-plane graphene-based heterostructures. These
feasible-to-implement approaches yield rich features neces-
sary for systematic studies of pseudomagnetic fields in strain
engineered graphene geometries, as demonstrated below.
When the graphene lattice is strained, the main

effect is to modify the hopping energy between the two
graphene sublattices. The modified energies add a term to
the momentum operators in the low energy Dirac
Hamiltonian, in the same way a vector potential is added
for electromagnetic fields. This gives a very useful way to
relate the mechanical deformation in graphene with a gauge
field that acts on the graphene electronic structure [2–9].
The pseudomagnetic field, Bps, is given by the 2D curl of
the mechanically derived gauge field. For elastic deforma-
tions, the pseudomagnetic field in graphene is related to the
strain field in the plane of the graphene as [2–9]
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Bps ¼
tβ
evF

�
−2 ∂ϵxy∂x − ∂

∂y ðϵxx − ϵyyÞ
�
; ð1Þ

where β ¼ 2.5 is a dimensionless coupling constant, t ¼
2.8 eV is the hopping energy, vF ¼ 1 × 106 ms−1 is the
Fermi velocity, and ϵxx, ϵyy, and ϵxy are the components of
the strain tensor of the graphene. The x axis is along the
zigzag direction of graphene lattice. The field in Eq. (1) is
for one graphene valley, with opposite sign for the other
valley.
We consider the pseudomagnetic field under the special

case of uniaxial stretch (see Sec. I in Supplemental Material
[37]) given by,

Bps ¼
3tβ
evF

ð1þ νÞ ∂ϵyy∂y ; ð2Þ
where ν is Poisson’s ratio of graphene. The above formu-
lation reveals that a programmable pseudomagnetic field is
achieved if the strain gradient ∂ϵyy=∂y in graphene can be
engineered under a simple uniaxial stretch. For example, a
constant strain gradient ∂ϵyy=∂y in graphene (i.e., a linear
distribution of tensile strain in the armchair direction) can
result in a uniform pseudomagnetic field over a large area

of graphene, a highly desirable feature to enable direct
experimental characterization of the resulting field.
To demonstrate the feasibility to engineer the strain field

in graphene under a simple uniaxial stretch, we first
consider a graphene nanoribbon of length L that is
patterned into a shape with a varying width WðyÞ and
subject to an applied uniaxial tensile strain ϵapp along its
length in the y direction [Fig. 1(a)]. The geometry of the
two long edges of the graphene nanoribbon is defined by a
shape function fðyÞ ¼ WðyÞ=W0, where W0 ¼ Wð0Þ
denotes the basal width of the graphene nanoribbon.
When L ≫ WðyÞ, it is reasonable to assume that ϵyy is
constant along any cross section cut in the x direction and
only varies along the y direction. This assumption is
justified in the majority part of the graphene nanoribbon
except in the vicinity of its four corners, as verified by both
finite element modeling and atomistic simulations [37].
Considering the force balance along any cross section cut in
the x direction, it is shown that [37]

∂ϵyy
∂y ¼ − F

EgW0h
1

f2
df
dy

; ð3Þ

FIG. 1 (color online). Producing uniform pseudomagnetic fields in a planar shaped graphene strip under a uniaxial stretch.
(a) Schematic showing a graphene nanoribbon of varying width under a uniaxial stretch producing a pseudomagnetic field, Bps. The red
circle denotes cyclotron orbits in the field giving rise to pseudo-Landau levels in (h). (b)–(d) Contour plots of the resulting strain
components in the graphene, ϵxx, ϵyy, and ϵxy, respectively, under a 5% uniaxial stretch. (e) Resulting pseudomagnetic fields in the
graphene nanoribbon shown in (a) under a uniaxial stretch of 5%, 10%, and 15%, respectively. (f) Intensity of the pseudomagnetic field
as the function of location along the centerline of the graphene ribbon for various applied uniaxial stretches. (g) Intensity of the
pseudomagnetic field is shown to be linearly proportional to the applied uniaxial stretch and inversely proportional to the length of the
graphene ribbon L. (h) Local density of states of unstrained graphene and graphene with a constant strain gradient determined by density
functional theory calculations. N ¼ 0 and N ¼ �1, �2, �3 Landau levels, corresponding to cyclotron motion in a magnetic field are
seen to emerge in the strained graphene, demonstrating a uniform pseudomagnetic field. The wiggles in the results for the unstrained
case result from finite size effects in the calculations. See Supplemental Material for further discussion [37].
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where F is the applied force at the ends of graphene
nanoribbon necessary to generate the uniaxial tensile strain
ϵapp; Eg and h are the Young’s modulus and thickness of
graphene, respectively.
Thus from Eq. (2), the resulting pseudomagnetic field in

such a patterned graphene nanoribbon is given by,

Bps ¼ − 3tβF
evFEgW0h

ð1þ νÞ 1

f2
df
dy

: ð4Þ

Equation (4) reveals that a tunable pseudomagnetic field
is achieved under a uniaxial stretch by engineering the
shape of the graphene nanoribbon. For example, to achieve
a uniform pseudomagnetic field, the corresponding shape
function is shown to be

fðyÞ ¼ frL
frðL − yÞ þ y

; ð5Þ

where fr ¼ fðLÞ denotes the ratio between the widths of
the top and bottom ends of the graphene nanoribbon. The
intensity of the resulting uniform pseudomagnetic field (see
Sec. III in Ref. [37] for details) is given by

Bps ¼
6tβ
evF

ϵapp
L

ð1 − frÞ
ð1þ frÞ

ð1þ νÞ: ð6Þ

To verify the above elasticity-based theoretical predic-
tion, we performed numerical simulations using both the
finite element method and atomistic simulations (see
Secs. V and VII in Ref. [37] for simulation details) to
calculate the strains and pseudomagnetic field using
Eq. (1), which lead to results well in agreement with the
above theory, Eqs. (2)–(6), as elaborated below.
Figure 1(a) shows the schematic of a graphene nano-

ribbon of L ¼ 25 nm, W0 ¼ 10 nm, fr ¼ 0.5, with two
long edges prescribed by the shape function in Eq. (5). The
ribbon is subject to an applied unidirectional stretch of 5%
in its length direction. Figures 1(b)–1(d) plot the compo-
nents of the resulting strain in the graphene, ϵxx, ϵyy, and
ϵxy, respectively, from finite element simulations. In the
majority portion of the graphene, except its four corners,
ϵxx and ϵyy show a linear distribution along the y direction
(also see Fig. S1(a) of [37]), while ϵxy shows a linear
distribution along the x direction. From Eq. (2), such a
strain distribution will result in a rather uniform pseudo-
magnetic field in the graphene nanoribbon.
Figure 1(e) plots the resulting pseudomagnetic fields in

the graphene nanoribbon under an applied uniaxial stretch
of 5%, 10%, and 15%, respectively, all of which clearly
show a uniform distribution in nearly the entire graphene
ribbon except at its four corners. The intensity of the
pseudomagnetic field as the function of location along the
centerline of the graphene ribbon is shown in Fig. 1(f), for
various applied uniaxial stretches (see Sec. V in Ref. [37]
for detailed discussions). For each case, the plateau in a
large portion of the curve shows a rather uniform and strong
pseudomagnetic field along the centerline of the graphene
nanoribbon (e.g., ≈150 T under a 15% stretch). Further
parametric studies [Fig. 1(g)] reveal that the intensity of

resulting pseudomagnetic field is linearly proportional to
the applied uniaxial stretch ϵapp and inversely proportional
to the length of the graphene ribbon L, in excellent
agreement with the dependence from the theoretic predic-
tion in Eq. (6) (See Sec. V in Ref. [37] for details). Our
atomistic simulation results (Fig. S4 of [37]) further verify
both the uniform distribution of the resulting pseudomag-
netic field in the graphene nanoribbon and the agreement
on the field intensity with the results from finite element
simulations. As additional verification, our density func-
tional theory calculation [38] produces pseudo-Landau
levels, corresponding to cyclotron motion in a magnetic
field [39] [Fig. 1(h)], attesting to the presence of a strain-
induced pseudomagnetic field for a graphene under a strain
field of constant ∂ϵyy=∂y (See Sec. II in Ref. [37] for
details).
Equation (6) also suggests another geometric dimension

to tailor the intensity of the pseudomagnetic field: tuning
the top-bottom width ratio fr of the graphene nanoribbon.
For nanoribbons with the same length, a smaller fr leads
to more strain localization (i.e., a higher strain gradient)
in the graphene nanoribbon, and thus a higher intensity of
the pseudomagnetic field. Figure S3 in the Supplemental
Material [37] shows the geometry of 25 nm long graphene
nanoribbons with three top-bottom width ratios, fr ¼ 0.35;
0.5, and 0.7, with the two long edges of each nanoribbon
prescribed by Eq. (5). The corresponding intensities
of the resulting pseudomagnetic field from finite element
simulations, as shown in Fig. S3(b) (Supplemental
Material [37]), are in excellent agreement with the pre-
diction from Eq. (6).
The programmable pseudomagnetic field in planar

graphene demonstrated above essentially originates from
determining a shape function that yields a tunable effective
stiffness in various locations of the graphene, which in turn
leads to nonuniform distribution of strain under a uniaxial
stretch. From a different point of view, the graphene
nanoribbon in Fig. 1(a) can be regarded as a lateral 2D
heterostructure, consisting of a pristine graphene nano-
ribbon and two patches on its side made of 2D material
(vacuum) with zero stiffness [e.g., Fig. 2(a)]. As a result,
the effective stiffness of the graphene nanoribbon at differ-
ent cross-section decreases from the wider end to the
narrower end. The above mechanistic understanding indeed
opens up more versatile approaches to achieving a pro-
grammable pseudomagnetic field in planar graphene
hetero-structures, which we further explore as follows.
Recent experiments demonstrate facile fabrication of high

quality in-plane hetero-epitaxial nanostructures such as
graphene-graphane and graphene–h-BN heterostructures
in a single 2D atomic layer [32–35]. The more corrugated
lattice structures of graphane and h-BN lead to an in-plane
stiffness smaller than that of pristine graphene [40–43]. It is
expected that such in-plane hetero-structures with proper
geometry (shape function) can be tuned to have a suitable
variation of effective stiffness, and thus allow for a desirable
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strain distribution to enable programmable pseudomagnetic
fields in the graphene portion under a uniaxial stretch.
Consider a rectangular 2D hetero-structure with a gra-

phene nanoribbon and two patches of another 2D crystal of
effective stiffness Eh [e.g., graphane or h-BN, Fig. 2(a)].
Following a similar theoretical formulation as for the
graphene nanoribbon shown above, it is shown that a
programmable pseudomagnetic field in the graphene
domain can be achieved by tailoring its geometry in the
2D heterostructure. For example, a suitable shape function
fðyÞ of the two long edges of the graphene domain can be
solved so that a uniaxial stretch in the y direction can
generate a uniform pseudomagnetic field in the graphene
domain (see Sec. IV in Ref. [37] for details).
To verify the above theoretical prediction, we carried out

both finite element modeling and atomistic simulations
[44–47] of two types of 2D heterostructures, graphene-
graphane and graphene–h-BN, respectively, under uniaxial
stretch, as shown in Fig. 2(a). The intensity of the resulting
pseudomagnetic field in the graphene domain of a graphene-
graphane and a graphene–h-BN heterostructure, are shown
in Fig. 2(b), respectively. Here the top-bottom width ratio of
the graphene domain fr ¼ 0.5, and the applied stretch is
15%. A rather uniform distribution of the pseudomagnetic
field is clearly evident, with an intensity of ≈33 T
(graphene-graphane) and ≈22 T (graphene–h-BN), respec-
tively, in good agreement with theoretical predictions. There
exists a unique advantage of using a 2D heterostructure over
a pure graphene nanoribbon. It is shown that a stronger
pseudomagnetic field can be generated in a graphene
nanoribbon (or domain in a 2D heterostructure) with a
smaller top-bottom width ratio fr, with all other parameters
kept the same [Eq. (S20) in Ref. [37]]. To maximize such a

tunability on field intensity, a graphene nanoribbon with
fr ¼ 0 (the narrower end shrinks to a point) is desirable, but
applying uniaxial stretch to such a nanostructure becomes
prohibitive given its sharp tip. By contrast, a tipped graphene
domain in a 2D heterostructure is feasible to fabricate and a
uniaxial stretch can be readily applied to the rectangular 2D
heterostructure. Figure 2(c) demonstrates the resulting pseu-
domagnetic field in two types of such a heterostructure, with
an elevated average intensity of ≈70 T (graphene-graphane)
and ≈45 T (graphene–h-BN), respectively, in comparison
with those in Fig. 2(b) (fr ¼ 0.5, all other parameter being
the same). Further atomistic simulations (Fig. S5 of [37])
show good agreement with the above finite element model-
ing results in terms of both distribution and intensity of the
resulting pseudomagnetic field.
In conclusion, we offer a long-sought solution to achiev-

ing a programmable pseudomagnetic field in planar
graphene over a large area via a feasible and effective
strain-engineering mechanism. Our method utilizes a shape
function applied to a planar graphene sheet to achieve a
constant strain gradient when applying a simple uniaxial
stretch to a graphene ribbon [Fig. 1(a)].We demonstrate such
a mechanism in both graphene nanoribbons and graphene-
based 2D heterostructures with resulting pseudomagnetic
fields possessing a uniform distribution and a tunable
intensity over a wide range of 0 to 200 T. Such a
programmable pseudomagnetic field under a uniaxial stretch
results from the tunable effective stiffness of graphene by
tailoring its geometry, so that the challenge of generating a
controllable strain gradient in graphene can be resolved by
patterning the shape of a graphene nanoribbon or the
graphene domain in a 2D heterostructure, a viable approach
with the ever advancing 2D nanofabrication technologies.

FIG. 2 (color online). Producing uniform pseudomagnetic fields in planar graphene-based heterostructures under a uniaxial stretch.
(a) Schematic showing a 2D heterostructure consisting of graphene and graphane (or h-BN) bonded to a center piece of graphene under a
uniaxial stretch. (b) Left: Intensity of the resulting pseudomagnetic field in the graphene domain of a graphene-graphane and a
graphene–h-BN heterostructure, respectively, under a 15% uniaxial stretch. Here the top-bottom width ratio of the graphene domain is
fr ¼ 0.5. Right: Contour plot of the resulting pseudomagnetic field in the graphene-graphane heterostructure. (c) Left: Intensity of the
resulting pseudomagnetic field in the graphene domain of a graphene-graphane and a graphene–h-BN heterostructure, respectively,
under a 15% uniaxial stretch. Here the top-bottom width ratio of the graphene domain is fr ¼ 0. Right: Contour plot of the resulting
pseudomagnetic field in the graphene-graphane heterostructure.
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These feasible-to-implement approaches can yield rich
rewards from systematic studies of pseudomagnetic fields
in graphene, which are extreme fields compared to normal
laboratory field strengths, and can be arbitrarily patterned in
two dimensions. For example, a repeating programmable
pseudomagnetic field can be generated in a wide range of
structures over large areas by repeating the suitable geo-
metrical patterns, e.g., a long graphene ribbon ([Fig. S6(a) of
[37]), a graphene nanomesh (Fig. S6(b) of [37]), and a
graphene-based 2D superlattice structure (Fig. S6(c) of [37]).
The geometrical nature of the concept demonstrated in the
present study is applicable to other 2D materials, and thus
sheds light on fertile opportunities of strain engineering of a
wide range of 2D materials for future investigations.
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I. Pseudomagnetic field under a uniaxial stretch 

The constitutive law of a 2D elastic material correlates the stress 𝜎𝜎𝑖𝑖𝑖𝑖 and the strain 𝜖𝜖𝑖𝑖𝑖𝑖  in 
the form of  

 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝐸𝐸
1−𝜈𝜈2

(𝜖𝜖𝑥𝑥𝑥𝑥 + 𝜈𝜈𝜖𝜖𝑦𝑦𝑦𝑦), 𝜎𝜎𝑦𝑦𝑦𝑦 = 𝐸𝐸
1−𝜈𝜈2

(𝜖𝜖𝑦𝑦𝑦𝑦 + 𝜈𝜈𝜖𝜖𝑥𝑥𝑥𝑥), and 𝜎𝜎𝑥𝑥𝑦𝑦 = 2𝐺𝐺𝜖𝜖𝑥𝑥𝑦𝑦,  (S1) 

where 𝐸𝐸 is the Young’s modulus, 𝜈𝜈 is Poisson’s ratio and 𝐺𝐺 = 𝐸𝐸
2(1+𝜈𝜈)

 is the shear modulus of the 

material. Stress equilibrium requires 

 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜎𝜎𝑦𝑦𝑥𝑥
𝜕𝜕𝑦𝑦

= 0, 𝜕𝜕𝜎𝜎𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

= 0.  (S2)  

Combining Eqs. (S1-S2) leads to 

 𝐸𝐸
1−𝜈𝜈2

�𝜕𝜕𝜖𝜖𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝜈𝜈𝜕𝜕𝜖𝜖𝑦𝑦𝑦𝑦
𝜕𝜕𝑥𝑥

� + 2𝐺𝐺 𝜕𝜕𝜖𝜖𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

= 0, 𝐸𝐸
1−𝜈𝜈2

�𝜕𝜕𝜖𝜖𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

+ 𝜈𝜈𝜕𝜕𝜖𝜖𝑥𝑥𝑥𝑥
𝜕𝜕𝑦𝑦

� + 2𝐺𝐺 𝜕𝜕𝜖𝜖𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

= 0. (S3) 

When the graphene is subject to a uniaxial stretch along the armchair direction in its 
plane, 𝜖𝜖𝑥𝑥𝑥𝑥 = −𝜈𝜈𝜖𝜖𝑦𝑦𝑦𝑦, and Eq. (S3) becomes 

  𝜕𝜕𝜖𝜖𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

= 0, 𝜕𝜕𝜖𝜖𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

= −(1 + 𝜈𝜈) 𝜕𝜕𝜖𝜖𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

.  (S4) 

Substituting Eq. (S4) into Eq. (1) of the main text leads to Eq. (2), which is a main result 
for determining the requirements for generating a programmable uniform pseudomagnetic field. 

II. Pseudo-Landau levels when 𝝏𝝏𝝐𝝐𝒚𝒚𝒚𝒚
𝝏𝝏𝒚𝒚

= constant  

We calculate the local density of states (LDOS) using density functional theory (DFT) 
applied to a scaled down graphene nanoribbon.  Pseudo-Landau levels appear in the LDOS due 
to the strain generated pseudomagnetic field.  To compare the pseudofields to the results from 
finite element calculations, we point out that the DFT calculations will underestimate the 
pseudomagnetic field. As to be explained in details below, the molecular model for DFT 

calculations is subject to a finite constant strain gradient 𝜕𝜕𝜖𝜖𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

, but 𝜕𝜕𝜖𝜖𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

= 0 and 𝜕𝜕𝜖𝜖𝑥𝑥𝑥𝑥
𝜕𝜕𝑦𝑦

= 0. By 

contrast, in a graphene nanoribbon under uniaxial stretch, 𝜕𝜕𝜖𝜖𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

 and 𝜕𝜕𝜖𝜖𝑥𝑥𝑥𝑥
𝜕𝜕𝑦𝑦

 are related to 𝜕𝜕𝜖𝜖𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

  (e.g., 

Eq. (S4)) and thus generally non-zero. Following the analysis in section I and comparing with 
Eq. (2), the resulting DFT generated pseudomagnetic field will then be given by, 

 𝐵𝐵psDFT =  𝛽𝛽
𝛼𝛼
𝜕𝜕𝜖𝜖𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

= 𝐵𝐵ps
3(1+𝜈𝜈)

.  (S5) 

Figure S1(a) shows the distribution of 𝜖𝜖𝑦𝑦𝑦𝑦  in a graphene nanoribbon [as in Fig. 1(a)] 
subject to a uniaxial applied stretch of 15 %, obtained from finite element simulations. The 
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bottom panel in Fig. S1(a) clearly shows a constant gradient of 𝜖𝜖𝑦𝑦𝑦𝑦 in the nanoribbon.  We first 
consider a molecular model representing a local region (indicated by the boxed area in Fig. 
S1(a)) in the nanoribbon. Fig. S1(b) shows the atomistic details of the molecular model labeled 
with characteristic bond lengths and bond-stretching strains. The positions of the carbon atoms in 
this molecular model are prescribed so that the corresponding strain gradient of 𝜖𝜖𝑦𝑦𝑦𝑦 is 0.0036 
nm−1, in accordance with strain gradient obtained from finite element simulations.  Two such 
molecular models are patched head-to-head along their short edges with higher 𝜖𝜖𝑦𝑦𝑦𝑦 to define the 
molecular model for DFT calculations [Fig. S1(c)]. Periodic boundary conditions are applied 
along both horizontal and vertical directions of the DFT molecular model while a vacuum region 
of 10 nm is set along out-of-plane direction. As a result, such a model indeed represents an 
infinitely large graphene subject to alternating strain gradients along its armchair direction, 
which can effectively eliminate the artificial edge effects in the LDOS [4]. As a control 
calculation, we also construct the unstrained molecular model by relaxing all carbon-carbon 
bond length in Fig. S1(c) to that in pristine graphene [1.42 Å, Fig. S1(d)].  We perform first-
principle DFT calculations in a supercell configuration by utilizing the SIESTA code [38]. The 
generalized gradient approximation (GGA) in the framework of Perdew-Burke-Ernzerhof (PBE) 
is adopted for the exchange-correlation potential. Numerical atomic orbitals with double zeta 
plus polarization (DZP) are used for basis set, with a plane-wave energy cutoff of 4080 eV (300 
Ry). Self-consistent Field (SCF) tolerance is set to 10-6.  A 160 × 5 × 1 Monkhorst-Pack k-point 
mesh is used for Brillouin zone integration in the strained model [Fig. S1(c)], while a 140 × 5 × 1 
Monkhorst-Pack k-point mesh is used in the unstrained model [Fig. S1(d)], in order to ensure 
comparable k points separation. For LDOS calculations, the mesh along x and y directions is 
increased to 50 times of its initial size while the number of k points in out-of-plane direction is 
kept as one. For example, an 8000 × 250 × 1 mesh is used for the LDOS calculation of the 
strained model. The peak broadening width for LDOS calculation is 0.02 eV. The electronic 
smearing temperature during the calculation is 300 K.  

The LDOS of all carbon atom in the supercell for both strained and unstrained cases, and 
simulated Landau Levels are compared in Fig. 1(h). The appearance of additional peaks in the 
LDOS for the strained case is clearly shown, which is comparable to the pseudo-Landau Levels 
generated by a real magnetic field of 30 T. Figure S2 further shows the linear scaling relation 
between the DFT pseudo peak energies and the square root of the orbital index, N. 
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FIG. S1. (color online). (a) Distribution of  in a graphene nanoribbon [as in Fig. 1(a)] subject 
to a uniaxial applied stretch of 15 %. The bottom panel clearly shows the linear distribution (i.e., constant 
gradient) of  in the nanoribbon. (b) A molecular model within a local region in the nanoribbon 
(indicated by the boxed area in (a)). The box in (b) denotes the molecular model containing 32 carbon 
atoms. The lengths of characteristic carbon-carbon bonds are labeled and the corresponding bond-
stretching strains are shaded using the same color scale as in (a). (c) The DFT model is made of two 
molecular models in (b) that are patched head-to-head along their short edges with higher . The box 
denotes the supercell containing 64 carbon atoms and periodic boundary conditions are applied to the 
edges of the supercell. (d) The DFT model for the unstrained case of the molecular model in (c).  
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FIG. S2. (color online). Linear scaling between the pseudo peak energies  from DFT results as 
shown in Fig. 1(h) and √ , where  is the peak index.     

 

The intensity of the pseudomagnetic field can be estimated by the energy spacing 
between pseudo Landau level peak positions from DFT calculations [1, 39]  

 (S6) 

From Fig. S2, the energy spacing between pseudo peak N=0 ( Dirac ) and N=1 ( 1) is 

~0.21 eV, which gives ps
DFT ≅  33.63  T. Using Eq. (S5) gives ps ≅  118  T, which roughly 

agrees with the finite element modeling result (≈150 T), as shown in Fig. 1(f). Since the 
pseudomagnetic field intensity predicted by DFT is corrected by a scaling factor to the elasticity-
based theoretic prediction via Eq. (S5), we believe such a difference in the estimated 
pseudomagnetic field intensity essentially originates from the fact that the elasticity-based 
theoretic prediction modestly underestimates the field intensity in comparison with the finite 
element modeling results (see Section V for detailed discussion). Nonetheless, the above DFT 
calculations offers solid evidence attesting to the presence of a strain-induced pseudomagnetic 
field, as suggested by Eq. (2).  

 

III. Solving optimal shape function for a uniform pseudomagnetic field in a graphene 
nanoribbon under a uniaxial stretch  

Force balance along any cross-section cut of the graphene nanoribbon in Fig. 1(a) in y 
direction gives 
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 𝐹𝐹 = 𝐸𝐸g𝑓𝑓(𝑦𝑦)𝑊𝑊0ℎ𝜖𝜖𝑦𝑦𝑦𝑦, (S7) 

where 𝐹𝐹  is the applied force at the ends of graphene nanoribbon necessary to generate the 

uniaxial tensile strain 𝜖𝜖app . 𝐸𝐸g  and ℎ  are the Young’s Modulus and thickness of graphene, 

respectively. Re-arrange Eq. (S7) and take derivative with respect to y, we get 

 𝜕𝜕𝜖𝜖𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

= − 𝐹𝐹
𝐸𝐸g𝑊𝑊0ℎ

1
𝑓𝑓2

𝑑𝑑𝑓𝑓
𝑑𝑑𝑦𝑦

. (S8) 

For a uniform strain gradient 𝜕𝜕𝜖𝜖𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

, Eq. (3) gives the governing equation of the optimal 

shape function, 

 1
𝑓𝑓2

𝑑𝑑𝑓𝑓
𝑑𝑑𝑦𝑦

= 𝐶𝐶, (S9) 

where C is a constant.  Using the boundary conditions of 𝑓𝑓(0) = 1 and 𝑓𝑓(𝐿𝐿) = 𝑓𝑓r(≠ 0), the 
solution of the shape function is given by 

 𝑓𝑓(𝑦𝑦) = 𝑓𝑓r 𝐿𝐿
𝑓𝑓r (𝐿𝐿 − 𝑦𝑦)+ 𝑦𝑦

, (S10) 

 
and 

 𝐶𝐶 = 𝑓𝑓r−1 
𝑓𝑓r 𝐿𝐿

. (S11) 

 
The unknown quantity 𝐹𝐹 in Eq. (S7) can be related to the global deformation by the loading-
deformation condition 

 ∫ 𝜖𝜖𝑦𝑦𝑦𝑦
𝐿𝐿
0 𝑑𝑑𝑦𝑦 = Δ𝐿𝐿 (S12) 

where 

 𝜖𝜖𝑦𝑦𝑦𝑦 = 𝐹𝐹
𝐸𝐸g𝑊𝑊0ℎ

1
𝑓𝑓(𝑦𝑦)

 (S13) 

and Δ𝐿𝐿 is the change in length of the graphene nanoribbon under uniaxial stretch so that 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎 =
Δ𝐿𝐿/𝐿𝐿.  

Equations (S12) and (S13) lead to  

 𝐹𝐹 = 2 Δ𝐿𝐿 𝐸𝐸g 𝑓𝑓r 𝑊𝑊0ℎ
(1 + 𝑓𝑓r)𝐿𝐿

 (S14) 

Substituting Eqs. (S10) and (S14) into Eq. (4) gives 
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 𝐵𝐵ps = 6𝑡𝑡𝛽𝛽
𝑒𝑒𝑣𝑣F

 𝜖𝜖app  
𝐿𝐿

(1−𝑓𝑓r)
(1 + 𝑓𝑓r)

 (1 + 𝜈𝜈), (S15) 

 

IV. Solving the optimal shape function for a uniform pseudomagnetic field in a graphene-
based 2D hetero-structure under a uniaxial stretch 

Force balance along any cross-section of the 2D hetero-structure gives 

 𝐸𝐸g𝑊𝑊0ℎ𝑓𝑓(𝑦𝑦)𝜖𝜖𝑦𝑦𝑦𝑦 + 𝐸𝐸h𝑊𝑊0ℎ�1 − 𝑓𝑓(𝑦𝑦)�𝜖𝜖𝑦𝑦𝑦𝑦 = 𝐹𝐹, (S16) 

so that  

 𝜕𝜕𝜖𝜖𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

= − 𝐹𝐹
𝐸𝐸g𝑊𝑊0ℎ

(1−
𝐸𝐸h
𝐸𝐸g

 )𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦

��1−
𝐸𝐸h
𝐸𝐸g

 �𝑓𝑓+
𝐸𝐸h
𝐸𝐸g

 �
2. (S17) 

Solving 𝜕𝜕𝜖𝜖𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 gives 

 𝑓𝑓(𝑦𝑦) =
−
𝐸𝐸h
𝐸𝐸g
−��1−�𝑓𝑓r�1−

𝐸𝐸h
𝐸𝐸g
�+

𝐸𝐸h
𝐸𝐸g
�
−1
�𝑦𝑦𝐿𝐿−1�

−1

1−
𝐸𝐸h
𝐸𝐸g

 (S18) 

Following a similar strategy as in Section III, one gets 

 𝜕𝜕𝜖𝜖𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

=
2 𝜖𝜖app (1− 𝑓𝑓r)�1− 

𝐸𝐸h
𝐸𝐸g
�

𝐿𝐿�1 + 𝑓𝑓r �1− 
𝐸𝐸h
𝐸𝐸g
�+ 

𝐸𝐸h
𝐸𝐸g
�
 (S19) 

and 

 𝐵𝐵ps = 6𝑡𝑡𝛽𝛽
𝑒𝑒𝑣𝑣F

 𝜖𝜖app (1− 𝑓𝑓r)�1− 
𝐸𝐸h
𝐸𝐸g
�

𝐿𝐿�1 + 𝑓𝑓r �1− 
𝐸𝐸h
𝐸𝐸g
�+ 

𝐸𝐸h
𝐸𝐸g
�
 (1 + 𝑣𝑣). (S20) 

Equation (S20) suggests that the larger the difference in stiffness of the constituent 

materials in the 2D hetero-structure (i.e., smaller 𝐸𝐸h
𝐸𝐸g

), the more intensive the resulting 

pseudomagnetic field. Equation (S20) reduces to Eq. (6) when 𝐸𝐸h
𝐸𝐸g

= 0  (i.e., a graphene 

nanoribbon).  

 

V. Finite element modeling and comparison with elasticity-based theoretical prediction 

Graphene, as well as graphane and h-BN, are modeled as linear elastic materials with 
Young’s Moduli of 1 TPa, 0.73 TPa, 0.82 TPa and Poisson’s ratios of 0.17, 0.08, 0.22, 
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respectively [40-43]. Large-strain quadrilateral shell elements (S4R), which allow for finite 
membrane strain, are used for modeling all materials. All material intrinsic thickness is set to 
0.34 nm. In finite element models, the bottom edge of the graphene nanoribbon (or the 2D 
hetero-structure) is fixed in y direction. A displacement u in y direction is applied at the top edge, 
so that 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝 = 𝑢𝑢/𝐿𝐿. Both top edge and bottom edge are allowed to deform along x direction. 
The two long edges are free. The modeling is carried out using finite element method. The strain 
distribution obtained from finite element modeling is then plugged into Eq. (1) to calculate the 
intensity of the resulting pseudomagnetic field [Fig. 1, (e) to (g)], which is then compared with 
the field intensity theoretically predicted using Eq. (6). 

We design the loading scheme in which the edges are allowed to move in x direction 
rather than completely clamped edge condition out of two concerns: (1) If the two ends of the 
ribbon are completely clamped, significant shear strain rises near four corners of the ribbon due 
to the mechanical constraint from the clamp and the lateral contraction of the ribbon due to the 
Poisson’s ratio effect. Such significant shear strains at the corners are undesirable because they 
could cause complicate strain distribution in the center portion of the ribbon and thus 
compromise the uniformity of the resulting pseudomagnetic field. The loading scheme adopted 
in this work can avoid such an undesirable edge effect and allow for achieving rather uniform 
pseudomagnetic field in a large portion of the graphene ribbon, as shown in Fig. 1(e); (2) The 
suitably shaped graphene ribbon based on the optimal shape function (e.g., Fig. 1(a) and Fig. 2) 
can be viewed as a unit cell representation for the patterned graphene hetero-structures 
supperlattices (e.g., Fig. S6) to achieve uniform pseudomagnetic fields in a much larger 
structure. In practice, when such a superlattice structure with a sufficiently large length is 
uniaxially stretched, even though its two ends are clamped, the edge effect decays rapidly along 
the length directly, and majority portion of the superlattice structure away from the two clamped 
ends deform under the condition rather close to the loading scheme adopted in our approach.  

The comparison between the results from finite element simulations [Fig. 1, (e) to (f)] 
and those from elasticity-based theoretic prediction (Eq. (6)) shows that the theory modestly 
underestimates the intensity of resulting pseudomagnetic field (defined by the plateau value). 
This can be attributed to the assumption of a linear distribution of 𝜖𝜖𝑦𝑦𝑦𝑦 (or 𝜖𝜖𝑥𝑥𝑥𝑥) over the entire 
length and linear distribution of 𝜖𝜖𝑥𝑥𝑦𝑦over the entire width of the graphene nanoribbon in the 
theory. As shown in Fig. 1 (b-d), such an assumption holds for the graphene nanoribbon except at 
its four corners, leading to an effective length of the ribbon shorter than the entire length and thus 
a higher intensity of pseudomagnetic field. 

It is noted that in Fig. 1(f), as the applied stretch increases, the resulting pseudomagnetic 
field in the middle section of the graphene ribbon shows a slight deviation from a perfectly 
uniform plateau, which becomes more pronounced as the applied stretch further increases. Such 
a slight deviation can be understood by the nature of the theoretical derivation of the optimal 
shape function (e.g., Eq. (S10)). The optimal shape function is derived by assuming the ribbon is 
subject to a uniaxial stretch and then considering the force balance of the ribbon to achieve a 
uniform strain gradient. The resulting optimal shape function is independent of the magnitude of 
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the applied stretch. Such a function is then used to define the original shape of the ribbon 
simulated in the finite element modeling.  As the applied stretch increases, the ribbon elongates 
in the loading direction, and due to Poisson’s ratio effect, also contracts in the lateral direction. 
As a result, the shape of the ribbon is no longer the same as described by the optimal shape 
function. Specifically, the narrower end of the ribbon contracts more than the wider end, which 
results in a slightly smaller effective value of fr, and thus in turn leads to a slightly higher 
magnitude of pseudomagnetic field according to Eq. (6). The above effect becomes more 
pronounced as the applied stretch increases, which is accountable for the slightly deviating trend 
of pseudomagnetic field as shown in Fig. 1(f).  

 

VI. Effect of top/bottom width ratio on pseudomagnetic field in a graphene nanoribbon 

Figure S3(a) shows three 25-nm long graphene nanoribbons with different top-bottom 
ratios r = 0.35, 0.5, and 0.7. The basal width is 10 nm. Their two long edges are prescribed by 
the optimized shape function given in Eq. (S10). Figure S3(b) shows the finite element modeling 
results on the effect of top-bottom width ratio r  on the intensity of the resulting pseudomagnetic 
field. The smaller the top-bottom width ratio, the higher the strain gradient in the graphene, and 
thus the stronger the resulting pseudomagnetic field, which agrees well with our theoretical 
prediction (Eq. (S15)).  

 
FIG. S3. (color online). (a) The geometry of 25 nm long graphene nanoribbons of three top/bottom width 
ratio = 0.35, 0.5, and 0.7, respectively, with two their long edges of each nanoribbon prescribed by Eq. 
(S10). (b) The corresponding intensities of the resulting pseudomagnetic field from finite element 
simulations under a 5 % uniaxial stretch. 

VII. Atomistic simulations  

The atomistic simulations are carried out using Large-scale Atomic/Molecular Massively 
Parallel Simulator (LAMMPS) [44]. Figures S4(a) and S5(a) show the atomistic simulation 
models for the graphene nanoribbon and graphene-based 2D hetero-structure, respectively. Each 
model contains two graphene nanoribbons, the same as shown in Fig. 1(b) [or two 2D hetero-

5% Stretch(a) (b)
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structures as same as shown in Fig. 2(a)], which are covalently bonded along their wider ends in 
a mirroring fashion. Periodic boundary condition is applied along the vertical (loading) direction, 
therefore the atomistic model indeed represents a long graphene nanoribbon [e.g., Fig. S6(a)] or 
a large graphene-based 2D hetero-superlattice structure [e.g., Fig. S6(c)] with a repeating unit 
defined by Figs. S4(a) and S5(a), respectively.  

For simulations of graphene nanoribbons and graphene/graphane hetero-structures, the 
carbon-carbon (C-C) and carbon-hydrogen (C-H) bonds in the graphene as well as the non-
bonded C-C and C-H interactions are described by the Adaptive intermolecular Reactive 
Empirical Bond Order (AIREBO) potential [45]. For simulations of graphene/h-BN hetero-
structures, the atomic interactions are described by the Tersoff potential [46, 47]. The molecular 
mechanics simulations are carried out at zero K temperature. The loading is applied by gradually 
elongating the simulation box along vertical direction. At each loading step, the energy of the 
system is first minimized by using conjugate gradient algorithm until either the total energy 
change between successive iterations divided by the energy magnitude is less than or equal to 10-

8 or the total force is less than 10-5 eV/nm. The strain components, determined by Lagrange strain 
tensor in the deformed state, are used to calculate the resulting pseudomagnetic field.  

 

FIG. S4. (color online). (a) Atomistic simulation models for the graphene nanoribbon. (b)-(d) Atomistic 
simulations results on pseudomagnetic fields in the graphene nanoribbon under a uniaxial stretch of 5 %, 
10 % and 15 %, respectively. 

 

5% 10% 15%

(a) (b) (c) (d)
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Figure S4 (b-d) plots the resulting pseudomagnetic field in the graphene nanoribbon 
under a uniaxial stretch of 5 %, 10 % and 15 %, respectively. The corresponding averaged 
intensity of the pseudomagnetic field near the central region of the top or bottom part is 
approximately 55 T, 100 T, and 125 T, respectively, in excellent agreement with the prediction 
from finite element modeling [Fig. 1(e)]. The ripple-like feature in the contour of 
pseudomagnetic field along the long edges coincides with the non-smooth and discrete nature of 
the long edges of the graphene nanoribbon to fit the shape function.  

 

 

FIG. S5. (color online). (a) Atomistic simulation models for a graphene/graphane 2D hetero-structure with 
straight material domain boundary. (b) Atomistic simulation results on pseudomagnetic fields in the 
graphene domain in (a) under a uniaxial stretch of 15 %. (c) Atomistic simulation models for the 
graphene/h-BN 2D hetero-structure with straight material domain boundary. (d) Atomistic simulation 
results on pseudomagnetic fields in the graphene domain in (c) under a uniaxial stretch of 15 %. 

 

Figure S5 shows the quasi-uniform pseudomagnetic field in graphene/graphane and 
graphene/h-BN 2D hetero-structures with straight domain boundary, under a uniaxial stretch of 
15 %.  

 

 

 

 

(a) (b) (c) (d)



 S12 

VIII. Pseudomagnetic fields in patterned graphene hetero-structures superlattices 

 

 
 
FIG. S6. (color online). Pseudomagnetic fields in patterned graphene hetero-structures 
superlattices.  (a) Schematic of a suitably patterned long graphene nanoribbon (left) and the 
contour plot of the resulting pseudomagnetic field under a 15 % uniaxial stretch (right). (b) 
Schematic of a suitably patterned graphene nanomesh (left) and the contour plot of the resulting 
pseudomagnetic field under a 15 % uniaxial stretch (right). (c) Schematic of a suitably patterned 
graphene-based 2D superlattice structure (left) and the contour plot of the resulting 
pseudomagnetic field under a 15 % uniaxial stretch (right). The scale for Bps is from – 200 T to 
200 T. 

 
 

(a) (b) (c)


