ON STOCHASTIC BEHAVIOR OF PERTURBED
HAMILTONIAN SYSTEMS

MICHAEL BRIN AND MARK FREIDLIN

ABSTRACT. We consider deterministic perturbations

FE@)+F (¢°(2)) = eb(¢°(2), ¢°(2)) of an oscillator 4+ F'(¢) =0, q €
R'. Assume that limjye F(q) = oo and that F’(q) has a finite
number of nondegenerate zeros. For a generic F, if dive(z) < 0
(an analogue of friction), then typical orbits are attracted to points
where F' has a local minimum. For 0 < € < 1, the equilibrium to
which the trajectory is attracted is “random”. To study this ran-
domness which is caused by the sensitive behavior of trajectories
near the saddle points we consider the graph I' homeomorphic to
the space of connected components of the level sets of the Hamil-
tonian H(p,q) = p?/2+ F(q). We show that, as ¢ — 0, the slow
component of (p€(t/e€), ¢°(t/€)) tends to a certain stochastic process
on I' which is deterministic inside the edges and branches at the
interior vertices into adjacent edges with probabilities which can
be calculated through the Hamiltonian H and the perturbation b.

1. INTRODUCTION

An oscillator with one degree of freedom is given by the following
equation

(1.1) G(t) + f(q(t)) =0, ¢(0) = qo, 4(0) = po,
where ¢ € R!. The Hamiltonian of the system is

1
H(p,q) = §p2+F(Q),

where F(q) = foq f(u)du is the potential and p = ¢. Although the
results of this paper can be generalized for a wider class of potentials
(e.g., periodic potentials) we impose for brevity the following restric-
tions on the potential. We assume that limjy. F(¢) = oo and that
f(q) is a generic smooth function, so that f(q) has a finite number of
nondegenerate zeros (if f(q) = 0, then f/(¢) # 0) and the critical values
of I are pairwise distinct.
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We consider perturbations of (1.1) and show that the long time be-
havior of the perturbed system is in a certain sense stochastic.

Let b(p,q), p,q € R% be a smooth function with bounded first and
second derivatives. Consider the perturbed equation

(1.2) G (1) + f(q° (1)) = eb(g"(1),q°(1)), 0 < e <1,

and assume first that f(g) has only one zero, at ¢ = 0 with f'(¢) > 0
(see Figure 1).

Of course, one can consider an expansion of ¢°() in powers of ¢.
This describes the solutions of the perturbed system (1.2) on any finite
time interval. However, this approach cannot answer more interesting
questions concerning the behavior of the perturbed system on large
time intervals of the order of ™', A typical example of such a question
is the exit problem: how long does it take for the trajectory (p*(t), ¢°(¢))
of (1.2) to exit a domain G C R? say, bounded by two trajectories
C(zi)={rx e R?*: H(z) = z},1= 1,2, of (1.1)?

H(p.0)

— | >
G

q

FIGURE 1

The long time behavior of X*(t) = (p°(t),¢°(t)) is of course related
to the averaging principle. Since H(p, q) is a first integral for (1.1), for
a small e, H (p°(t), ¢°(¢)) changes slowly so that the flow of (1.2) in R?
has a fast component and a slow component. The fast component is
basically the rotation along the corresponding nonperturbed trajectory
(p(t),q(t)). Near an energy level z of (1.1), asymptotically as ¢ | 0,
the fast component can be characterized by the invariant measure of
the nonperturbed system on the level set C(z) of H. The density of
the normalized invariant measure on C'(z) with respect to the length
element dl is

(vae § . Wfl—i”) = (pa)
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The slow motion is described by the evolution of H(p®(t),q°(1)) =

1
5 (p*(1))> + F(¢°(t)) which has the rate of order . To deal with finite

time intervals one rescales the time by considering pe(t) = p°(t/e),
G°(t) = ¢°(t/e), X=(t) = (p°(1), ¢°(1)) , X*(1) = X*(t/e). Then
(13) F 0+ 1) =b (¥ (0.a70)

and it follows that

) (X)) -1 (F0) = [ FEbEe.ae) s

On a small but independent of ¢ time interval [t,t + A], A < 1,
the energy H ()N( 5(t)) changes by an amount of order A, uniformly

in ¢ € (0,1]. The number of revolutions that the fast motion makes
along the corresponding level set during the same time is of order Ae™!.
Therefore, applying the classical averaging principle (see, e.g., [FWen2],
Chapter 7), one gets from (1.4) that asymptotically as € | 0, the slow

component H ()? *(t)) converges uniformly on any finite time interval
[0,10] to the averaged motion H(t):

: 1 pb(p, q) dl
(15 g N < LU
(H()) Jome) /p* + [2(q)
dl
where T'(z) = % ———— is the period of the oscillations with
o) VPt + fq)

energy H(p,q) = z, C(z) = {(p,q) € R* : H(p,q) = z}. By the
divergence theorem, the integral in the right hand side of (1.5) equals

(1.6) B(Z):/G()%;q)dpdq, z= H(t),

where (G(z) is the domain in R? bounded by C'(z). Note that if S(z) =
area((G(z)), then T'(z) = S'(z). Thus (1.5) takes the form

_ B(H(1)
S(H(1)

In particular, if B(z) does not change sign, the slow component is
monotone. If B(z9) = 0 and B'(zy) < 0, then the perturbed equation
has a stable limit cycle near the curve C(z). The point H = 0 is
inaccessible in finite time for the trajectory H(t) with H(0) > 0.

Consider now the case when f has several zeros. Suppose for ex-
2

ample, that H(p,q) = % + F(q) has a saddle at O = (0,0) (i.e.,

(1.7) H(l)
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H(p,q)

@ -
P
(b) (d)
FIGURE 2
the potential F(q) has a local maximum at ¢ = 0 and two minima
b
see Figure 2). For brevity assume that W <0, (p,q) € R? (a
P

kind of friction for the oscillator) and let H(pg, o) > H(O). Then,
by (1.7), H(t) decreases as t increases. Since |B(H(O))| is finite and
T(z) = oo as z | H(O), the right hand side B(z)/T(z) of (1.7) equals
0 at = = H(O). It is easy to check that T'(z) ~ |In(z — H(O))|™
as z | H(O). Therefore, in spite of the fact that B(z)/T(z) = 0 at
z = H(O), the trajectory H(t) will reach the point z = H(O) in a
finite time Ty = Ty(z0), )?5(()) = zo = (po, qo)- The phase portrait of
%®r.a) _ o
dp
as a result of the perturbation, the centers will become stable spiral
points but the saddle persists, see Figure 3. The trajectories X*(¢) of
the perturbed system, except the two separatrices of O, tend to one
of the attractors O] or O) depending on the initial point and . As
we explain below, it is natural to view the limiting slow motion on the
graph corresponding to the Hamiltonian H (see [FWenl], [FWen2]).
The set of the connected components of the level sets C'(z) = H™'(2),
with the natural topology, is homeomorphic to a tree I' with vertices
O; and edges [;. Each level set C'(z) consists of a finite number of
components Ci(z). By the genericity assumption on F, each interior

the unperturbed system is shown in Figure 2b. Since
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FIGURE 3

vertex is adjacent to exactly three edges; it corresponds to a saddle of H
and represents an oo-shaped component of the saddle’s level set. The
vertices of I' of degree 1 (i.e., with only one adjacent edge) correspond
to the minima and maxima of H, they represent the components of
the level sets consisting of single points. The points lying inside the
edges of I' correspond to the periodic orbits of (1.1). A point u € I is
characterized by the edge number k& and the corresponding value of the
Hamiltonian. The pair (H, k) defines global coordinates on I'; more
than one pair may correspond to a vertex. Let @ : R? — I' be the
projection x — (H(z),k(z)) € T so that Q(Ck(z)) € Iz. Note that
H(z) and k(z) are first integrals of the unperturbed system. If H has
more than one local minimum, & is independent of H.

In general, when the averaging principle is applied to a perturbed
system, the slow component describes the evolution of the first integrals
of the unperturbed system along the perturbed trajectories. In our case
there is a smooth first integral H and an integer valued first integral
k. Their joint evolution naturally happens on I.

In Section 2 we construct a stochastic process Q(t) on I'. Inside
each edge e of I' the process Q(t) is deterministic and is governed by

0b(; ~
Equation (1.7) for e. If % < 0, then H(X*(t)) decreases (i.e.,
P
Q(t) moves down along I', see Figure 3) and Q(¢) branches at each
interior vertex O of I' with probabilities proportional to the integrals

0b(]
of % over the regions in R? bounded by the separatrices of the
P
saddle of (1.1) corresponding to O.
In this paper we show that for a potential with several local minima

(and in general, for Hamiltonian systems with one degree of freedom

and several critical points), as ¢ | 0, the slow component of )N(E(t) tends
in a certain sense to the stochastic process Q(?).
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There are several ways to give the convergence a precise meaning.
In Section 2 we consider random perturbations of the right hand side
of (1.2). We replace eb(p, q) with b(p, q) + aﬁa(q)Wt, where W, is
the standard one-dimensional white noise, £ > 0 and o(q) is a smooth
positive function. We prove that, as first ¢ and then x tend to 0, the

process () ()?;:) on I' converges weakly to the process Q(¢) on I'. We

emphasize that the limit process Q(¢) does not depend on the choice
of o(q).

In Section 3 we consider random perturbations of the initial point
X*(0) of the deterministic trajectory. Let X*(0) = 4 & = x5, where
£s is random variable in R? with a continuous density, which converges
to 0 as § — 0. Let )N(E"g(t) = (}55’5(15),(]5’5(15)) be the solution of (1.3)

with initial condition x5 = (ps, ¢s). The slow motion is the projection

Q ()?”%t)) of )?E’é(t) to I'. We prove in Section 3 that for any 7" > 0,

as first € and then ¢ tend to 0, the stochastic process ) ()?“%t)) on

' converges weakly in the space of continuous functions ¢ : [0,7] — '
to the stochastic process Q(¢) on I'.

The fact that in both cases and for different o the limit process Q(t)
on I for the slow motion is the same, shows that () is determined by
the intrinsic properties of the Hamiltonian system and its deterministic
perturbation eb(p,q) and not by the random noise which we use to
regularize the problem.

We also consider a more general situation when the oscillator (1.1) is
replaced by a general Hamiltonian system with one degree of freedom.

2. PERTURBATION OF THE VECTOR FIELD

Let Wy, t > 0, be the one-dimensional Wiener process, o(z), © € R,
be a positive C'"*-function and let 0 < k¥ < 1. In this section we
consider a random perturbation of the right hand side of equation (1.2)
of the following form:

(2.1) G (1) + F (g7 (1) = eb(¢"(1), 47" () + V/aro (¢ (1)) Wy
Now ¢**(t) is a stochastic process in R. To make it a Markov process
we consider the pair p=*(t) = ¢**(¢) and ¢*"(¢). After rescaling time
por(t) = p*r(t/e), ¢ (t) = q="(t/e) we obtain the following equations
for p**(t) and ¢ (1):

P () = éf (7(1)) +b (5" (1), 47"(1)) + Vror (37 (1) W

(2.2) -
() = ().
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The generator of the diffusion process )?E’”(t) = (p="(t), " (1)) is

K 0* 0 1 0
Ee,.“i — b .
o)+ W) s~ L)+ o
Let ' = {]1,...,[n;(’)1,..., O} be the graph corresponding to

H(p.q) = 3p* + F(q) and Q : R* — T be the corresponding pro-
jection, Q(p,q) = (H(p,q),i(p,q)) € I', (p,q) € R% If an edge [; is
adjacent to a vertex Oy, we write [; ~ O, .

Let O be an interior vertex of I' with adjacent edges I, I;,, [,
Or. The set Q'(Oy) consists of the equilibrium point O and two
separatrices 75 and 77 of Oy for the unperturbed system (1.1). Denote
by G;(O) the domain bounded by 5; and assume that Q~'(/;;) C

G;(Ok), 7 =1,2. Define

ﬂk]:/ c*(q)dpdq, j=1,2,
G;(O%)

Brs = —(Br1 + Brz) -

Consider the process Q**(t) = Q (p>"(¢),¢>"(t)) on I', which is the
slow component of (p**(t),¢>"(t)) as € | 0. It follows from [FWebl],
[FWeb2] that for any fixed k > 0, as € | 0, the process Q*"(¢) converges
weakly in the space of continuous functlons to a diffusion process Q)F on
I'. Inside any edge I; C T', the generator A of Q¥ (on smooth functions)
is

k d d 1 d
(24) 251(2) d= ( (Z)dz> ST R Sl
where S;(z) is the area of the domain in R? bounded by C;(z) =
Q7' (=,1), Si(z) = T and

ob(p,
Ai(z) = /G‘( )0'2((]) dpdq, Bi(z)= /G( ) (appq) dpdq .

Let g : I' = R, be a continuous function such that Ag is continuous and
g 1s smooth inside the edges of I'. Then g belongs to the domain D4
of the generator A of Qf if and only if the following gluing condition
is satisfied at any interior vertex O € I':

(2.3)

(2.5) Zﬁk]‘ng(Ok) =0

where the 3’s are defined by (2.3), D; denotes the z-derivative along
I;; and I;, I;,, I;; ~ Og. The limiting process Q7 is uniquely defined
by the operators L and the gluing conditions (2.5).
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Note that, if an edge I;; ~ Oy, then the limit lim;)-o0, B, (2) =
B;(Og) exists. If I,, I;,, I;; ~ O and z increases along [, and [;, and
decreases along [;, as the point approaches Oy, then

B3(O) = B1(Ok) + B2(Oy)
for any interior vertex Oy € I'. We assume for brevity that
(2.6) Bi(Or) #0, 1=1,2,3,

for any interior vertex O, € I'.

Let I; be an edge adjacent to an interior vertex Oy. We call [; an exit
edge if H(Q '(u)) increases (decreases) along I; as u € I' approaches
Oy, and if B;(z) < 0 (B;i(z) > 0) for z close to H(Q™'(Ok)). If I; ~ Oy
and is not an exit edge, it is called an entrance edge for Oy. By (2.6),
every interior vertex is adjacent to at least one exit edge and at least
one entrance edge.

Consider the stochastic process Q(t) on I' defined by the following
properties:

1. Inside any edge I; C T, the process Q(t) is deterministic motion

with speed B;(z)/S!(z) :

dQ(t B; [
Q) _ BAQM) oy
dt - S5{(Q(1))
2. If an interior vertex Oy is adjacent to only one exit edge [;, then
Q(t) leaves Oy without delay along I;.
3. If O is an interior vertex and I;,, I;, ~ Oy are exit edges, then

Q(t) leaves Oy without delay along I;, or I;, with probabilities

_ | B1(Ok)| _ | B2(O)|
|B1(Ok)| + | B2(Ok)| | Bi(Or)| + [ Ba(Ox)|”

respectively, independently of the past.

P

b

dQ(t
Note that the speed chli ) is equal to 0 at any vertex of I" but, as sim-

ple calculations show, near an interior vertex Oy with H (Q~'(O})) =
Hy, this 0 is of order (|In |z — Hy||)™" as |z — Hy| — 0. Therefore the
interior vertices are accessible for Q(¢) in finite time and the trajectory
@Q(t) can leave such a vertex without delay. The exterior vertices are
inaccessible for Q(t).

Let 44 and fyz be the separatrices of Oy for the unperturbed system
(1.1) and let G, be the domain bounded by 77, j = 1,2. Then

0b(p, .
Bj(ok) = /G %dpdq, J=12 BS(Ok) = B1(Ok) + BQ(Ok)-

J
k
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We will show that, for any 7' € [0,00), as & | 0, the process Q*(t),
t € [0,7], on I' converges weakly in the space of continuous functions
¢ :10,T] — I to the process (). Note that the “randomness” of ()
is localized at the interior vertices with two exit edges. Since the mea-
sure in the space of trajectories of Q(¢) is independent of the random
perturbation (i.e., independent of o(q)), the process Q(¢) describes in-
trinsic properties of the Hamiltonian system (1.1) and its deterministic
perturbations.

The Hamiltonian H can be viewed as a function on I'. Let p be the
metric on I' induced by the distance |H(uq) — H(uz)| inside the edges
of T.

Denote by Cor(I') the space of continuous functions on [0, 7] with
values in I'.

LEMMA 2.1. For any compact subset K C I, the family of stochastic
processes QF(1), 0 < k <1, Q*(0) € K, is tight in the topology of weak
convergence in Cop(T')

Proof. The proof of this lemma is similar to the proof of Lemma 3.2
from [FWenl] and we omit it. O

Set En(u) = {v € I': p(u,v) < h}foru € I"and 7/ = min{t : Q"(1) ¢
En(u)}. As usual, we use the subscript for probability and expectation
to indicate the initial point.

LEMMA 2.2. Let Oy be an interior vertex of I' and let I;,, I;,, I;, ~
Ok.
If I;, is the only exit edge for Oy, then for a small enough h

(2.7) lim Po, {Q" (7F) € Iy} = 1.

If there are two exit edges I;;, and I, then for a small enough h

(2.8) limPok {Q" () el } =0
(2.9) hmPok{Q () el } =P, j=1,2.
Proof. Yoru = (2,1) € &(Oy), set vi(u) = vF(z,1) = P, {Q ) el }

The function v%(z,1) is the unique continuous solutlon of the followmg
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problem
Li,v5(2,0m) = 0, (2,0m) € E(Or) \ {Ok}, m = 1,2,3;
CACKEY (nim)edEn(ORAL,, = 0 10T M F J,
(2.10) Vi (20| i yesenion = b

3
> Bem D (Or) = 0.
m=1

Operators L; and constants (i, where introduced in (2.4) and (2.3).
Problem (2.10) can be solved explicitly and then equalities (2.7),
(2.8) and (2.9) can be checked. Without loss of generality assume that

H(Q_I(Ok)) = 07 H(Q_1(27i3)) > 0 and H(Q_l(zail))v H(Q_l(ZviQ)) <

0. Define
* 2B, (y) + kAL ()
Uk (= :/ = tm dy ,
( ) 0 Aim(y) Y

1
. T U5 (z)
Vi(z) = e K dz, m=1,2,3.
0

Note that A;, (y) is strictly positive and bounded; A} (y) — oo as

y — 0 but this singularity is integrable.
The solution of (2.10) has the form:

1 —d9)vr dZVE(—h
UV iy 5,
o560 = § v v o
/ VAR , ifi=1,2, j#1;
(V) vy
vi(2,3) = Vi'(h) ’ T
$2:3) = asve () — V() .
Vrh) , if 7 #3.
3
The constants df are defined by the following gluing conditions
3
(2.11) > Bim Duvf(O4) =0, j=1,2,3.
m=1

It follows from the definition of v(2,7) that

Po, {Q%(r7) € I;,} = v (Ok) = df .
Choose h so small that B, (z) # 0 in £,(O). Since Vi(z) — oo as

& } 0if (k,m) lies in an entrance edge I,, for Ok, one obtains easily

from (2.11) that d% — 0 as x | 0. This yields (2.7) and (2.8).
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To prove (2.9) observe that since [, is an exit edge for Oy, (2.11)
implies that
(1—df)B difpra
— 0x(1), as k | 0,
(e
(1 =d5)Brz  d3Bm
— 0x(1), as k| 0.
e A

Therefore

i BuVy(=h)
ds — BraVi(=h)’
From the last equality we obtain that

—h z 2B;
dr . /Bkl fO eXp{—fo HAii(Z) Y-

(2.12) di +d5 =1+ 0.(1),

fz Aél (l/)dy} dZ

d
| ) 0 Ay (v)
(2.13) lim -t = lim ; B
K dﬁ 3 —h z 2Bi2( ) # Ai2 (y)
10 d3 Y B Jo " exp {_ 0 kA, (Z) dy = Jo Aiz () dy} oz
—h z 2Bi;
. ﬁkl fo exp {_ 0 iA”EZ; dy} dz _
;;}Jl:gl /8 _h z 2Bi2 (y)d d N
k2 fO eXpy— Jo KAy (y) y ‘

_ 2| Bi, (0)]
B heXp{—iﬁ , }dz
- MG ()]

0 —h z[Bi,(0) N BZ'2 0 '
Bra fo exp {— lAi2(0)|}dz | B, (0)]

We used in the last equality that i; = lim._0 A, (2) = A;;(0), 5 = 1,2.

2y

Formulas (2.12) and (2.13) imply (2.9). O

LEMMA 2.3. Assume that B;(O) # 0,1 = 1,2,3, for an interior
vertex O. Then there is hg > 0 and A > 0 such that for any h € (0, ho,
any (z,1) € E,(Ok) and any small enough K

EZJT:(O}C) § Ah| 1nh| .

Proof. The lemma can be proved by writing down and solving explicitly
a boundary value problem in &,(Oy) C I for u"(z,i) = F,;77(Ok). To
reduce the calculations we use comparison arguments (the maximum
principle).

As before we assume without loss of generality that Oy is an interior
vertex, [;,, I;,, 1i; ~ Oy and that H(Oy) = 0. Let Diy (Dout) be the
subset of {i1, 2,13} consisting of the indices of the entrance (exit) edges
of O. Let hg > 0 be so small that the functions Bij(z) have no zeros

in £(Ok). Consider the domain
My (Ok) = {Ujepi 1; U{Ok} U [(Ujepe., I;) N E(Ox)] -
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FIGURE 4

For example, in Figure 4 Di, = {3}, Douw = {1,2}, the set M;(O) is
shown by a thick line. Since we are interested in the h-neighborhood of
Ok, 0 < h < hg, we can assume that the functions B; (z) are uniformly
bounded away from 0 in the edge I;;, i; € Diy,. Moreover, we replace
the edges I;,, j € Din, by infinite rays attached to Oy which increases
the exit time from M;(Oy). The signs of the functions By, (z) are such
that the drift is directed to Oy, on the entrance edge(s) and away from
O on the exit edge(s). The exit time from M (Oy) increases if the
drift in the entrance edge(s) is replaced by a weaker drift with the
same sign and independent of ¢ € Dy, and the diffusion coefficients are
replaced by a smaller positive and independent of ¢+ € D, constant.
Similarly the drift and diffusion in the exit edge(s) can be replaced by
quantities independent of the edge, increasing the exit time. We denote
the modified process by Q.

Since the coefficients are now the same for the entrance edge(s) and
the same for the exit edge(s), the exit time of Q" from M}, (Oy) is the
same as the exit time from M, = {x € R : > —h} for the one-
dimensional process X; whose diffusion and drift coefficients on [—£, 0]
are the same as those of Q" on the exit edge(s) and whose diffusion and
drift coefficients on [0, 00) are the same as those of Q" on the entrance
edges. Since S!(z) has a singularity of order |In |z|| at O, we conclude
that the function u(z,¢) is bounded from above for |z| < h by the
function v*(z) = E.7¢, where 7% = min{t : X; < —h}. The function

v"(z) is the minimal positive solution of the problem

kv"(2) = (B — &y [In" [2]]) v'(2) = —ar[In" |2]]
(2.14) 2> —h, 240, v(—h) =0,

v(z) and v'(z) are continuous at z = 0,
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where a, 3, are appropriate positive constants, In* |z| = In |z]if |z| < e
and In* |z| = 1 if |z] > e. Since the coefficients have a singularity at
z = 0, equation (2.14) is satisfied only for z # 0. The solution of (2.14)

is

z—/ Syt el de et / ~ oy In” Jol]) do
/ / |1n |z|| d= .

Using the integrability of |1n| || at 2 = 0 we conclude that for |z| < h
and some positive constants A;

(2.15) o( /eﬂ dy |1n lv||dv =

Ag/ de™ / = |In* ||| dv =
—_h Y

o0 h h
Agei_y/ e [In* |v]| dv —|—A2/ [In* |v]|| dv
Y R —h

=[8

< Ash|Inh| + Age® / e [In* v|dv — Age™ / e [In™ |v|| dv
h —h

Since

s [ _po 0 _Blo=h)
ex [ e * |[In"v|dv < |1nh|/ e = dv=
h h

= |1nh|li/ e Pdv = Agrlnh,
0

_on [T s
e ® e” = |In* |v]|dv =
—h
h
h _Bv

o |U||dU—|—€_ﬁh/ e_i_v|ln*v|dv§
h

e =
—h

h
/ lIn |v||dv 4+ AscInh < As (h|Inh| 4+ kInh) ,
—h
we conclude from (2.15) that, for |z| < h and & small enough,
v(z) < Agh|Inh|
and the lemma follows. O

The argument in the proof of Lemma (2.3) implies the following fact.
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COROLLARY 2.4. For any 6 >0

2.16 I P, {75 > 8} = 0 uniformly in x € (0, k),
(2.16) ifﬁlze%%k) {77 } uniformly in k € (0, Ko

where 7 = min {t : Q"(t) ¢ M,(Oy)}.
For an edge [; C I' with ends Oy, and Oy,, set
TP =min{t: Q(t) ¢ I; \ (E4(Ok, ) U EL(O,))} , K, h > 0;
TEM) =T Aty 1> 0; TYO(t) = Ti(t).
LEMMA 2.5. For anyd >0,1>0

(217) EEJIPZ’Z { maXt) |Q"(5) — Q(S)| > (S} = 0,

0<s<T;(
where the subindex (z,1) means that Q*(0) = (z,1) = Q(0).

Proof. The coefficients of the equations for Q*(¢) and Q(t) are Lipschitz
before time Tf’h/\TO’h(t). Therefore (2.17) with T;(¢) replaced by Tf’h/\
TOh(t) follows by standard Gronwall-Bellman inequality arguments (cf.
Section 4.2 of [F]). This together with (2.16) implies the lemma. O

By Lemmas 2.2, 2.3 and 2.5, as x | 0, the finite dimensional dis-
tributions of Q*(t), 0 < ¢t < T, converge to the finite dimensional
distributions of Q(¢). This convergence together with the weak tight-
ness of the process Q"(¢) guaranteed by Lemma 2.1, implies the weak
convergence of @Q*(1) to Q(t) in the space Cor(I'). Theorem 2.6 below
follows from the weak convergence of Q*"(t), 0 <t < T, to Q"(¢) as
e } 0 in Cor(I') and from the weak convergence of Q%(t) to Q(t) as
k0.

THEOREM 2.6. Assume that condition (2.6) is satisfied. Then for
any T > 0 the process Q*"(1) = @ (Xf/:) , L €[0,T], converges weakly
in Cor(l'), as first € | 0 and then s | 0, to the process Q(t) on I

Consider now a general Hamiltonian system with one degree of free-
dom

X(t)=VH(X(t), X(0)=(p,q) =z € R?,
= OH OH
VH = -, ——].
(p,q) ( 90 ap)
We assume that H(z) is a smooth generic function with limy|. H(z) =

oo. For a smooth bounded vector field b(x) in R? consider the perturbed
system

(2.18) Xe(t) = VH(X*(t)) +eb(X(1)), 0<e < 1.
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To study the slow component of this system we rescale the time by
setting X°(¢t) = X*®(t/e). Similarly to the system (1.1), the slow
component Q*(t) of X*(¢) is the image of X*(¢) under the projection
Q:R*=T,Q(t)=Q ()N(E(t)) (see also [FWenl]). It turns out that
similarly to the system (1.1), as € | 0, the deterministic process Q*(t)
converges, to a stochastic process )(t) on the graph I

To give this statement a meaning, we consider again random pertur-
bations of X*(¢). Let a(z), = € R?*, be a uniformly positive definite
2 x 2 matrix with bounded smooth coefficients. For k > 0, define the

random perturbation )N(E’”(t) of )?E(t) as the diffusion process in R?
governed by the operator

Lu(z) = gdiv (a(z)Vu(z))+ b(z) - Vu(z) + évH(r) -Vu(z).

Consider the diffusion process @*(¢) on I which is defined as follows.
Inside an edge I; C I, the generator A of the process @”(¢) (on smooth
functions) is

Kk d ' du;(z) : :
Liuiz) = 2T(z) dz <A2(2)7> * Ti(z) dz

where

() = a(x)VH(z)-VH(x)
Ailz) %01(2) [VH(z)| i

dl
TG = e B / b))

here C;(z) is the component of the level set C(z) = {z : H(z) = z}
corresponding to a point (z,¢) € I; and n,;(x) is the exterior normal to
Ci(z). By the divergence theorem

Bi(z) = /G‘( )divb(x) dz

where (7;(z) is the domain bounded by C;(z).

Let O be an interior vertex of I' and let [; ~ O, 5y = 1,2,3. As
(z,7) € I; approaches O, the set Q~'(z, ) tends to a closed curve ’yi
which is a subset of @Q7'(Oy). For two of the edges, the curves ’yi are

the separatrices of Oy and for the third one v} is their union.
A function u(z), x € T, smooth inside the edges of I', belongs to
the domain of definition of the generator A of @*(¢) if it is continuous
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together with Au(z) on I' and if the following gluing conditions are
satisfied at every interior vertex Oy:

Z :E/Qk]D]u((’)k) =0.
J:I;~Op

where

o a(x)VH(z)- VH(x)
o e

The “47 (“-7) sign in front of G, corresponds to H growing (decreas-
ing) as the point approaches Oy along I;. The operators L; and the
gluing conditions uniquely determine the process Q"().

By a slight generalization of the arguments in [FWenl1], [FWen2] and
by the absolute continuity arguments from [FWeb2] we obtain that for

any 7' > 0 and £ > 0, the process Q*"(t) = Q) ()?”‘(t)), 0<t<T,

converges, as ¢ | 0, to Q"(1).
For an interior vertex Oy and an edge I; ~ Oy, set

B;(Oy) = /G o )divb(m) dz ,

where, as before, G;(Oy) is the domain bounded by the curve fyi cor-
responding to [;. Define a process (¢) on I' as follows:

1. If Q(t) belongs to an open edge I; C I, then

dQ(t)— ! iwvb(r)dx
i~ T Q) /G,.@m)d ble)da

2. If there is only one exit edge I; for an interior vertex Oy, the
process (1) leaves O without delay along ;.

3. If there are two exit edges [;; and [, for an interior vertex Oy,
the process Q(t) leaves Oy without delay along I;;, j = 1,2, with
probability

_ |Bi(Ok)|
| B1(Ok)| + | B2(Ok)|
independently of the past.

P

Using the same arguments as in Theorem (2.6) we obtain the follow-
ing result.

THEOREM 2.7. Suppose B;j(Or) # 0 for any interior vertex Oy
and edge I; ~ Oy. Then, as first ¢ | 0 and then k | 0, the process

Q" (t)=Q ()N(E’”(t)> converges weakly in Cor(T') to the process Q(t).
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Note that Theorem (2.6) is not a special case of Theorem (2.7) be-
cause of the degeneracy of the random perturbation in Theorem (2.6).
A special case of Theorem (2.7) when a(z) is the unit matrix was stud-

iedin [W]. If H(p,q) = %pz—l—f(q),, the process Q(t) in Theorem (2.7) is

the same as in Theorem (2.6). We emphasize that the limiting process
is independent of the type of the random perturbations. If equation
(2.18) is perturbed by a stationary process y/keé(t) with strong enough
mixing properties and £(t) is not degenerate in a certain sense, then

we expect the same process (¢) in the limit, as first ¢ | 0 and then
k0.

3. PERTURBATION OF THE INITIAL CONDITION

In this section we consider perturbations of initial conditions for the
system

(3.1) Xe(1) = VH(X*(1)) + eb(X*(1)),

1
with a generic Hamiltonian H = §p2 + F(q), i.e., F"(q) # 0 for any

critical poit ¢ of I’ and all critical values of F' are distinct. We assume
that limy, . F'(q) = oo and that divb(z) < 0 for all z. Under these
assumptions, the set of connected components of the level sets C'(z) of
H, considered with the natural topology, is a tree I' with projection
Q:R*= T,z Q(x) = (H(x),k(x)), where Q(z) € Ij). Level sets
C(z) with large values of z correspond to the only semi-infinite edge
Iy of I'. The first coordinate increases if the point in I' approaches
Io. Since divb(z) < 0, each interior vertex O of I' corresponds to a
saddle of (1.1) (which we also denote O) and has degree three with one
entrance edge [, and two exit edges [; and [, which we call left and
right. The Hamiltonian H decreases as the point in I' approaches the
vertex along the entrance edge and increases as the point approaches
along the exit edges. If ¢ — O along [; (respectively [,), then the
closed orbit @~!(g) of (1.1) tends to a separatrix 7; (respectively v,) of
the corresponding saddle O. If ¢ — O along I., then the closed orbit
Q7 '(g) of (1.1) tends to the co-shaped figure v, U v,. Let G; and G,
be the domains bounded by ~; and #,. Set

J() :/ divb(z)dx, J(1,) :/ divb(z)dx

Gi -
Jp S
P([l) :JZ _I_ J 9 P([T) :Jl _I_ J
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If I is an edge of I', we refer to the end with the larger value of H as
the top of I and the end with the smaller value of H as the bottom of
I. The edge Iy has no top. For two edges I, I' C ', we write [ > [" if
there is a path a(/,I') in ' from the bottom of I to the top of " along
which H decreases. If I > I', then such a path is unique; it is a finite
collection of edges.

THEOREM 3.1. Suppose I and I' are edges of I' with [ > I' and
a(l, Y= (Ii,1y.... 0,), Lh=1,1,=1" Let U C Q (1) be open and
let U= C U be the set of initial points in U whose orbits under (1.2)
eventually enter Q~'(1"). Then

- omUT) 1T
lim ) I1r(1),

i=2

where m is the Lebesque measure in R2.

Theorem 3.1 follows by an inductive application of Proposition 3.3.
After this paper was written, Ya. Sinai pointed out that a statement
similar to Theorem 3.1 appears (without a proof) in V. Arnold’s paper
[A] (see Section 4.3); the authors are not aware of any published proof.
As before, the slow motion is described by the evolution of the pro-
jection of H(p*(t),¢°(t)) to I' which has the rate of order . To deal with
finite time intervals we rescale the time by considering p°(¢) = p®(t/¢),

F(1) = (1), X*() = (5° (1), ¢°(2)), K=(t) = X“(¢/c). Then
G0+ 27 0) =5 (7 0.5(0)

and

(3.2) Ke(t) = évﬂ (X)) +6(X ) -

It follows that

83) (X)) -1 (V0) = [ FEbE .6 s

Let )N(E(t, o) be the solution of (3.2) with initial condition )N(E(O, Tg) =
Zg.

Since for every interior vertex O of I', the time during which X*(t, z)
passes through a neighborhood of @~'(Q) is uniformly bounded in &,
the following theorem follows immediately from Theorem 3.1.

THEOREM 3.2. Let &5, 6 > 0, be a two-dimensional random vari-
able with a continuous density and such that €5 — 0 as § J 0.
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Then, for every T' > 0, as first € and then § tends to 0, the stochastic
process () (Xe(t, T+ fg)) converges weakly to the process (Qy, Qg = x.

O

FIGURE 5

We begin by considering the behavior of (3.1) in the special case
when H has one local maximum and two minima. The local maximum
corresponds to a saddle critical point O° of (3.1). As ¢ | 0, the saddle
O tends to a saddle O of (1.1). The two separatrices v, v, of O bound
a figure oco-shaped region consisting of two domains I and R shown in
Figure 5. Since divb(z) < 0, for a small enough ¢ > 0, the separatrices
spiral into the corresponding domains to the left and right of O°. Let
V(.. &) denote the time-t map of (3.1), G' denote the time-t map of
the gradient flow

X =VH(X),

and (i(z) the trajectory of a point z under the gradient flow. Let LB(e)
and RB(e) be the basins of attraction of L and B for (3.1), respectively:

LB ={ze€R*: V' (z,e) € L, fort > T(z) >0},
RB* ={z € R* : V'(z,¢c) € R, for t > T(z) > 0}.

The sets LB® and RB* consist of the central parts that are close to L
and B, respectively, and thin ribbons which we refer to as flow ribbons.
The boundaries of the flow ribbons are the stable separatrices 77 and
ve of O (see Figure 6).

Set

L:A&M@&,L:L&M@%.

Using the terminology of Section 2, the vertex O of I' has one en-
trance edge [ and two exit edges [; and [, corresponding to L and
B, respectively. Let B be the preimage of [ under the projection
Q:R2—T.

PROPOSITION 3.3. Let O° be a saddle of (3.1). Then, for every
open set U C B\ (LU R),
mUNLB®)

lim —————= =

esom(U N RB?) ~ J,
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Proof. We will estimate the H-thickness of the flow ribbons, i.e., the
difference between the values of H at the boundaries of the flow ribbons.
For a point z from ~7 or 47, let LB*(z) be the region obtained from
L B® by cutting off the tail flow ribbon along the connected component
of G(2)N LB containing x and let RB*(x) be the region obtained from
RB* by cutting off the tail flow ribbon along the connected component
of G(x) N RB* containing z. Assume that y,z € G(z), z € 75, y €
v, z € 45 and the segment of G(x) between x and z intersects the
separatrices only at z, y and z. Then LB*(z) = LB*(y) is bounded
by the segment of +; from O° to z, the segment of 47 from O° to y
and the segment of G(z) from z to y. Similarly RB*(y) = RB*(z) is
bounded by the segment of 47 from O° to y, the segment of ~; from O°
to z and the segment of G(z) = G(y) from y to z. For y = G'(z), let
F(z,y) denote the flux of VH + ¢b through the segment of 7' between
y and z:

(3.4) F(:z;,y):/o (VH(G™(2)) + eb(G7(2))) - VH(G™(z)) dr .

G(x)

2

FIGURE 6

LEMMA 3.4. Let H(O®) = a, let b > a be such that (a,b] does not
contain critical values of H. Then there is C' > 0 with the following
property. Suppose thalt y,z € G(x), v € ¥5, y € 7, z € 7° and the
segment of G(z) belween = and z intersects the separatrices only at x,
y and z. Assume also that b > H(z) > H(y) > H(z) = H(O") + 4
with § > 0. Then

[ = H) I
e R
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Proof. Since O¢ is a nondegenerate critical point, the area of H™'(a —
d,a + ) does not exceed Cl\/g for some constant C'; > 0. Therefore

(3.5) ,/ &vayE‘g(b(HJﬂVg.
H-1(a—8,a+5)

Since O is a nondegenerate critical point, |VH(£)| > Cy(H)\/$ for
£¢ H '(a—0d,a+ ). Therefore, assuming that y = G'(x)

(3.6) [H(y) - H(z) - Flz.y)| = / VH(GT(2))* dr — F(z,y)

=&

/0 b(G7(z)) - VH(G () dr

< S (H(y) - H(x)) .
Similarly
(3.7) |H(z) = H(y) — F(y,z)| < < (H(z) — H(y)) .

By the divergence theorem,

Flaw)=< [ o VUL, Fy.2) = JRLTELS

Bs(y,z)

Therefore, by (3.5),
|[F(a,y) = o < CsVE 1|
|[F(y,2) = Jil < CaVE 1]

where C3 and Cy are constants. The lemma follows from (3.6), (3.7)

and (3.8).

(3.8)

O

To keep track of the relative areas of different basins of attraction
away from the equilibrium O we construct a convenient coordinate
system away from the critical points in which we apply the averaging
principle to the equation in variations for (3.1).

Let —oo < a < b < oo and let C'(a,b) be a component of H~!([a,b])
which does not contain any critical points of H. We will use the so-
lutions of (1.1) and the gradient flow of H to construct a convenient
coordinate system. Let G* be the time-t map of the differential equa-
tion
(3.9) X = VH(X)
and W'(-, &) be the time-¢ map of (3.1). Call a solution of (1.1) or (3.1)

reqular if it 1s not an equilibrium and does not tend to an equilibrium
in either direction. The regular solution of (1.1) that starts at x is
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periodic with period T'(z). Let y € C(a,b) be a point with H(y) = a
and let ¢ = 27t/ (y) be the rescaled to length 27 time parameter on
the solution S(y) of (3.1) starting at y. Let II : C'(a,b) — S(y) be
the projection along the gradient flow (3.9). Then ¢ (II (¥(z,¢))) is
a smooth function and (H(z),#(1l(x))) is a smooth coordinate system

in C(a,b). Let

h(z,e) = {]|dG"(2) (V(X°(1)) + b(X= ()] 1S ()}

where 1(S(y)) is the length of S(y), dG'(z) is the derivative of G(z)
with respect to x and 7 is such that G7(x) = II(z). Then in coordinates

(H, ¢)
(3.10)  Xe(1) = (V(X(0) + eb(X7(1))) A(X*(1).)

has the form

(3.11) {H = eu(e, H,¢)

¢ =1,

where u is a smooth uniformly bounded function whose derivatives are
uniformly bounded for z € F' and ¢ € (0, &9).

Observe that by changing the velocity by a factor of h in (3.10) we
do not change the trajectories of (3.1) and therefore do not change the
basins L.B® and RB".

Consider now the following system of differential equations for the
derivative of the solution of (3.11) with respect to the initial point in
the direction of the variable H:

d _ Ou(e, H, )
H = cu(e, H, ¢)
¢ =1
After the change of time ¢ — /¢ we obtain the following system:
g 00y
dt OH
(3.12) Ho = u(eHo)
i

LEMMA 3.5. As e — 0, the solutions of (3.12) converge uniformly
in B\ (LUR), with first derivatives with respect to H, on bounded time
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intervals, to the solutions of the averaged system

d . ([ 0u0,H,e)
A = (/0 ngﬁ) AH

H = /Ozwu(o, H,$)d.

Proof. The statement follows immediately by the averaging principle

(see [FWen2], Chapter 7) applied to (3.12). O

LB/47 67/

=

FIGURE 7

To complete the proof of Proposition 3.3 observe that the flow rib-
bons of the basins LB® and RB*® partition the neighborhood U into
narrow curvilinear rectangles (see Figure 7) of almost constant width.
Since U does not contain the critical points of H, the proportions of
LB® and RB® in U can be measured by the H-widths of the flow rib-
bons. By Lemma 3.4, for a small §, the ratio of the H-widths of the
LB* flow ribbons and the RB* flow ribbons is close to Ji,/Jg in the
d-neighborhood of O°. By Lemma 3.5, as ¢ — 0, this ratio tends to a
constant in B. This finishes the proof of Proposition 3.3. U

Remark 3.1. The issue of independence from the past does not arise in
Section 3 since we consider the oscillator system and assume that the
divergence of the perturbation is negative. Together with the genericity
assumptions this implies that the tree I' is binary, one edge is an infinite
ray corresponding to large values of H, all interior vertices have one
entrance and two exit edges; H decreases from left to right in Figure 8
and decreases along the solutions of 1.2. In particular, all trajectories
have the same past and the limit process is Markovian.

If one does not assume that divb < 0, then I' may have an edge I with
ends O; and O, such that O; has two entrance edges and one exit edge
and O3 has one entrance and two exit edges, see Figure 9. The preimage
of I in the phase plane under the projection () is homeomorphic to a
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FIGURE 8

cylinder shown in Figure 9 on the right. There is a vertical cut in the
cylinder with the flow ribbons from O shaded to the left and the flow
ribbons from O, shaded to the right; the past behavior of the trajectory
is determined by the left shading and the future by the right. The
slope and width of the flow ribbons are of order ¢ and the number of
revolutions they make around the cylinder is of order ¢7'. Ase | 0, the
flow ribbons to the left of the cut are sliding up and the flow ribbons to
the right of the cut are sliding down at a rate of order Ae/e. Therefore,
for any nontrivial ratios of the integrals of divb over the areas enclosed
by the separatrices of the saddles, the conditional measures of initial
conditions corresponding to different pasts and futures do not have
limits as ¢ | 0. It seems though that if one averages the conditional
measures with respect to e, then the limits exist and the average (in ¢)
future behavior is asymptotically independent of the past.

2
/ \ flow ribbons flow ribbons
from O from O,

FIGURE 9
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2

EXAMPLE 3.2. Consider the oscillator with H(p,q) = 2 + F(q),

where the potential F has only one local maximum at ¢*, H(q*) = H*,

separating two local minima and |1|1m F(q) = oo (see Figure 2). For
—+00

(2,k) € Ii, the component Ci(z) of the level set H™'(z) is a periodic
trajectory of the oscillator. Let Tj(z) be the period of Cy(z) and Sk(z)
be the area of the region Gy(z) bounded by Ci(z), k = 1,2,3. Then
SL(H) = Ty(2).

Assume that the oscillator is perturbed by small friction proportional
to the velocity:

G(t) + F(q°(1) = —eB4°(1) -

Applying the results of this paper we conclude that the slow component,
after the rescaling of time ¢ — {/e, converges, as € | 0, to a process
Q(t) on I' whose description follows. Inside Iy, k = 1,2,3, the process
Q(t) is governed by the following differential equation:

dH S

— = div ,0) = ; ,
T (=Bp,0) = S( )

(3.13)

so that

Su(H(1)) = Sp(H(0))e " |

If the initial energy level H(0) is high enough, the slow motion starts
at a point (H(0),3) € I3 and is described by S3(H (¢ )) = Sg(H(O))e_ﬁt

until time ¢* when H decreases to H*, t* = _El 3 ( 0" At time
3
t* the process Q(t) branches into I or I with probabilities
Si(H* .
( ) bl = 17 27
S1(H*) + S2(H~)
where S;(H*), are the areas of the regions bounded by the two separa-
trices of the saddle (¢*,0). Inside I; and I, the evolution of the slow
component is given by S;(H (1)) = Ss( H*)e P17,

P =
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