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Flame shape is an important observed characteristic of flames that can be used to scale
flame properties such as heat release rates and radiation. Flame shape is affected by fuel
type, oxygen levels in the oxidiser, inverse burning and gravity. The objective of this study
is to understand the effect of high oxygen concentrations, inverse burning, and gravity on
the predictions of flame shapes. Flame shapes are obtained from recent analytical models
and compared with experimental data for a number of inverse and normal ethane flame
configurations with varying oxygen concentrations in the oxidiser and under earth gravity and
microgravity conditions. The Roper flame shape model was extended to predict the complete
flame shapes of laminar gas jet normal and inverse diffusion flames on round burners. The
Spalding model was extended to inverse diffusion flames. The results show that the extended
Roper model results in reasonable predictions for all microgravity and earth gravity flames
except for enhanced oxygen normal diffusion flames under earth gravity conditions. The results
also show trends towards cooler flames in microgravity that are in line with past experimental
observations. Some key characteristics of the predicted flame shapes and parameters needed
to describe the flame shape using the extended Roper model are discussed.

Keywords: flame shapes; Roper model; microgravity; inverse diffusion flames; oxygen
enhanced

Nomenclature
C coupling function = (f-fa)/(f0-fa)
d burner diameter
D mass diffusivity
f ν̄XF – XO2

Fr Froude number = u2
0/gd

g acceleration owing to gravity on earth = 9.81 m/s2

I0 Bessel function
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606 S. S. Krishnan et al.

ṁ mass flow rate
MW Molecular weight
Q heat release rate
r radial coordinate
rD characteristic scale of diffusion
Re Reynolds number = u0d/ν
t residence time
T temperature
Tch representative temperature for a flame or, for a flame in which the

temperatures vary, the maximum such temperature
u axial velocity component
v radial velocity component
X mole fraction
z axial coordinate
Zst stoichiometric mixture fraction, i.e. the stoichiometric mass fraction of

material that originated in the fuel supply
Z′

st stoichiometric mass fraction of material that originated in the burner stream,
i.e. Zst for NDFs and 1-Zst for IDFs.

Greek characters
α empirical value selected to match measured flame lengths with Roper predictions =

(Tch – T0)/(Tad – T0)
η dimensionless r coordinate
ν viscosity
ν̄ number of moles of O2 that react stoichiometrically with one mole of fuel
θ dimensionless z coordinate

Subscripts

a ambient condition
ad adiabatic
F fuel supply
max maximum value in the associated flame
O2 oxygen
ox oxidiser supply
st stoichiometric condition
0 initial burner condition

1. Introduction

Laminar diffusion flames in microgravity provide a simpler model configuration to study the
fundamentals of combustion without the effects of buoyancy. The study of steady non-flickering
laminar diffusion flames is an important first step towards understanding more complex turbulent
flames. Therefore, a number of experimental and theoretical studies have looked at microgravity
laminar diffusion flames and their shapes and soot emissions [1–5]. Laminar inverse diffusion
flames (IDFs) have been studied by a number of researchers because of their fundamental impor-
tance to understanding soot processes [6–9]. The IDF configuration is also of importance to some
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Combustion Theory and Modelling 607

possible fire scenarios on board spacecraft or extra vehicular activity (EVA) environments where
a high velocity jet of nearly pure oxygen (O2) may encounter fuel [10]. Turbulent IDFs using
enhanced oxygen have been reported to be most effective in increasing thermal radiation [11].
IDF configurations in which O2 concentrations in the oxidiser are high have been encountered in
fire scenarios aboard spacecraft as well as in terrestrial environments where oxygen is used for
life support.

A number of computational studies have been successful in predicting flame structure and
other flame properties of jet diffusion flames (see [12, 13] and the references therein). Analyt-
ical models have also been valuable tools for understanding and characterising the effects of
parameters such as pressure and gravity on flame shapes and lengths [1–5, 14] as well as for
the design of new combustion systems [15–19]. Further, flame length is a useful parameter in
determining scaling relationships for flame properties such as heat release rates and radiation
[20, 21].

In view of the interest in microgravity combustion, IDFs, and the effects of oxygen-enhanced
combustion, this study focuses on analytical models for predicting the shapes of laminar normal
and inverse diffusion flames at various O2 contents and gravity levels. The earliest flame shape
model was the Burke–Schumann model [22], that included axial convection and radial diffu-
sion effects while ignoring axial diffusion and radial convection effects. Two models commonly
used more recently in predicting the flame shapes are the Roper model [23, 24] and the Spald-
ing model [25]. The Roper model assumes that temperature and velocity are constant at each
axial location but allows these quantities to vary with z. Thus one may specify axial velocity
and/or temperature variations to account for buoyancy and heat loss. Further, the Roper model
is not based on a similarity solution and is hence applicable over the entire domain. However,
the Roper model does not include the effect of axial diffusion. The Spalding model assumes the
Schlichting [26] jet velocity profile and relates a conserved scalar, the mixture fraction, to the
velocity profile assuming equal rates of diffusion of species and momentum. This model does not
include the effects of buoyancy, property variation with temperature or axial diffusion. In the three
models discussed above, axial diffusion effects are neglected. Therefore, these models may not
be applicable to microscale diffusion flames such as described in references [16–19] where axial
diffusion effects may be important. Finally, Chung and Law [27] extended the Burke-Schumann
model [22] for flame shape to include axial diffusion effects and presented the results for the slot
burner geometry. However, the axial velocity is assumed constant in both these models. Table 1
summarises the four analytical models discussed above along with their limiting assumptions for
comparison purposes.

Sunderland et al. [28] extended the Roper model (this will be called the extended Roper model
here) to predict complete flame shapes (instead of just flame lengths) assuming uniform velocity
and temperature throughout the flame. This extension was considered in the recent textbook by
Annamalai and Puri [29]. Xu et al. [4] studied non-buoyant laminar diffusion flames and used a
simplified analysis following Spalding [25] and Lin et al. [2] for predicting flame shapes. This
model was based on boundary layer approximations along with a virtual origin and a constant that
is fixed based on whether stoichiometric or luminosity lengths are predicted. These two parameters
were obtained by fitting experimental data. This model, referred to here as the extended Spalding
model, resulted in predictions of both luminous and non-luminous flame shapes covering a wide
range of coflow and gravity conditions [4, 5]. Sunderland et al. [3] studied the flame lengths
and widths predicted by various models including the Roper model and concluded that these
models were able to predict the lengths of experimental buoyant and non-buoyant laminar normal
diffusion flames (NDFs) accurately but noted that very few models could be used to predict flame
widths accurately.
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608 S. S. Krishnan et al.

Table 1. Analytical models for flame shapes and their limiting assumptions.

Author/ Axial Axial Radial Radial Buoyancy Infinite Co-
Reference diffusion convection diffusion convection effects? domain? flow?

Burke-Schumann
[22]∗

Neglected Included‡ Included Neglected No No Yes

Roper [23]∗ Neglected Included§ Included Included Yes§ Yes No
Spalding [25]∗ Neglected Included Included Included No Yes No

Chung and Law

[27]†
Included Included‡ Included Neglected No No Yes

∗Results available for both slot and circular geometry burners.
†Results available for slot geometry burners only.
‡Axial velocity is assumed constant in these models.
§Axial velocity is modeled as a function of z and hence can account for the effects of buoyancy in a limited manner.

The objectives of the present study were to:

1. Understand the effect of assumptions made in the Spalding and the extended Roper model on
the shapes of NDFs and IDFs (for a wide range of O2 concentrations in the oxidiser and under
earth gravity and microgravity conditions).

2. Establish the empirical parameters that best match the flame shapes of laminar diffusion
flames in earth gravity as well as microgravity for a wide range of O2 concentrations in
the oxidiser using the appropriate models and based on comparisons with experimental
data.

Experimental data from microgravity and earth gravity NDFs and IDFs from Sunderland
et al. [30] were used.

The test conditions for the flames are listed in Table 2.

2. The extended Roper model

The Roper model for analytical prediction of flame lengths assumes the following [23, 24]:

1. Temperature and axial velocity are allowed to vary in the axial direction but are constant at
each z location, i.e. these are functions of z but not r.

2. Combustion causes no change in the number of molecules.
3. Axial diffusion is neglected.

Table 2. Test conditions for ethane flames in earth gravity and microgravity [30].

Flame XO2 Tad (K) Q (W) Zst Cst m0 (mg/s) u0 (mm/s) Re Fr (1g)

21 0.21 2258 72 0.059 0.057 1.51 52 39 0.05
21i 0.943 24.4 866 312 13.89
30 0.30 2553 102 0.081 0.079 2.16 74 55 0.10
30i 0.921 24.5 866 310 13.89
50 0.50 2839 171 0.125 0.125 3.60 124 92 0.28
50i 0.875 25.2 866 310 13.89
100 1.00 3082 342 0.211 0.222 7.21 247 185 1.13
100i 0.778 26.9 866 311 13.89
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Combustion Theory and Modelling 609

4. The momentum, mass and thermal diffusivities are the same.
5. The effects of radiation are not integral to the model but assumption 1 allows them to be

considered approximately.

As a consequence of assumption 1, buoyant acceleration effects can be accounted for by the
model.

Roper et al. [23, 24] predicted flame lengths based on the above assumptions. The original
derivation was in Cartesian coordinates while Sunderland et al. [28] converted the equation to
cylindrical coordinates as follows

v(r, z)
∂C(r, z)

∂r
+ u(z)

∂C

∂z
− D

r

∂

∂r

(
r
∂C

∂r

)
= 0; 0 ≤ z < ∞; 0 ≤ r < ∞. (1)

The boundary conditions for equation (1) are given by C(r, 0) = 1 for r < d/2, C(r, 0) = 0 for r
> d/2 and C → 0 in the far field. Equation (1) is solved using the transformation equations (2)
and the flame sheet is located where the mixture is stoichiometric.

t(z) =
∫ z

0

dz

u
; η(r, z) = r

rD(z)
;

d ln rD

dt
= v

r
; θ (t) = D

∫ t

0

dt

r2
D

(2)

Variables t and rD are the residence time on the flame axis and the characteristic scale of diffusion.
Then, equation (1) becomes

∂C(η, θ )

∂θ
= 1

η

∂

∂η

(
η
∂C

∂η

)
(3)

subject to the boundary conditions, C(η, 0) = 1 for η < 1 and C → 0 in the far field. The solution
to equation (3) is given by [28]

C(η, θ ) = e− η2

4θ

4θ

∫ 1

0
e− η1

4θ I0

(
η(η1)

1
2

2θ

)
dη1 (4)

where I0 is the modified Bessel function of the first kind and zero order. Substituting C =
Cst into equation (4) for a particular fuel and oxidiser combination results in the prediction of
the complete flame shape in (η, θ ) coordinates. Equation (4) is solved numerically to obtain
the contours in (η, θ ) coordinates using Romberg integration and Newton–Raphson iterative
methods.

The conversion from (η, θ ) coordinates to laboratory coordinates is given by the following
expressions [28]

z = u0d2

4D0

(
T0

T(z)

)0.67

θ ; (5)

r = d

2

(
u0

u(z)

T(z)

T0

)1/2

η. (6)
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610 S. S. Krishnan et al.

This conversion requires the specification of the axial velocity, u, and the temperature, T as
functions of z as discussed later.

Note that the definition of Cst follows Roper [23] and is defined on a molar basis as opposed
to Zst and Z′

st, which are defined on a mass basis and used in other models [1-5]. Cst and Z′
st are

related by equation (7) below:

1/Z
′
st = 1 + (1/Cst − 1)MWox/MWF (7)

2.1. Flame shapes in (η, θ ) coordinates

Figure 1 shows the contours of the extended Roper model predictions of flame shapes obtained
for some common gas fuels in air plotted in (η, θ ) coordinates. These contours are functions of
Cst only. Table 3 gives the values of Cst and Zst for these fuels burning in air. The dimensionless
flame length decreases with increasing Cst. (see Figure 1). If constant velocity and temperature
profiles are assumed, the (η, θ ) coordinates are directly proportional to the (r, z) coordinates.
However, for other assumptions of velocity and temperature profiles the real flame shapes in (r, z)
coordinates can be quite different from the profiles of Figure 1.

Figure 2 shows the predicted extended Roper contours for several values of Cst. Here η

and θ are normalised using their maximum values. For Cst < 0.1, typical of hydrocarbon fuels
burning in air, the normalised Roper contours are nearly identical. This is a useful result since
the normalised Roper contour for Cst = 0.05 in Figure 2 can be used as a good approximation for
the Roper shapes of NDFs of pure hydrocarbon fuels burning in air.

The flame shapes shown in Figure 2 can be classified into two groups: (i) 0 < Cst < 0.5,
where ηmax > 1, and (ii) 0.5 ≤ Cst ≤ 1.0, where ηmax = 1. The range of Cst in the first group is

Figure 1. Roper contours of flame sheets in transformed coordinates for normal diffusion flames of common
gas fuels in air.
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Combustion Theory and Modelling 611

Table 3. Stoichiometric characteristics of NDFs of common gas fuels
burning in air.

Fuel Zst Cst

H2 0.028 0.296
CH4 0.055 0.095
C2H2 0.070 0.078
C2H4 0.064 0.065
C2H6 0.059 0.057
C3H8 0.060 0.040
C4H10 0.061 0.031

representative of NDFs of pure hydrocarbon fuels and the shapes in this group exhibit a rounded
teardrop shape. In these flames, the widest part of the flame decreases in height as Cst increases
(see Figure 2).

Note that the flame shapes have an inflection point only for Cst ≥ 0.5. It may be of interest
to find when the flame sheet becomes exactly tangential to the burner at the burner exit. i.e. find
Cst for which the value of dη/dθ = 0 at η =1. In order to find this point analytically, since C =
Cst, a constant for the flame sheet and dC/dθ = ∂C/∂θ+ (∂C/∂η) (dη/dθ ), this problem reduces
to finding the value of C for which ∂C/∂θ = 0. It is clear that ∂C/∂θ = 0 at θ = 0. Therefore, the
value of Cst at η = 1, θ = 0 gives the required result from equation (4)

C(1, 0) = lim
θ→0

e− 1
4θ

4θ

∫ 1

0
e− η1

4θ I0

(
(η1)

1
2

2θ

)
dη1 (8)

Figure 2. Normalised Roper contours of flame sheets in transformed coordinates for laminar diffusion
flames.
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612 S. S. Krishnan et al.

The integral in equation (8) is obtained as [31]

∫ 1

0
e− η1

4θ I0

(
(η1)

1
2

2θ

)
dη1 = 2θ

(
e

1
4θ − e− 1

4θ I0

(
1

2θ

))
(9)

Equation (8) now reduces to

C(1, 0) = lim
θ→0

1

2

(
1 − e− 1

2θ I0

(
1

2θ

))
= 1

2
− lim

x→∞
I0(x)

ex
= 0.5 (10)

Therefore, at Cst = 0.5 the flame sheet is vertical at z = 0. However, owing to numerical accuracy
limitations this is not clear in Figure 2.

The range of Cst in the second group is representative of IDFs of pure hydrocarbon fuels
and the shapes in this group exhibit a needle-like shape which are widest at the base. As Cst

increases, the flame shape becomes narrower. The shapes become nearly conical for Cst = 0.7
(see Figure 2).

Figure 3 shows ηmax and θmax as functions of Cst. By setting η = 0, θ = θmax and C = Cst in
equation (4), the following expression for θmax is obtained

θmax = −1

4 ln(1 − Cst)
. (11)

For Cst ≥ 0.5, ηmax ≡ 1. However, there is no known closed form expression for ηmax when
Cst < 0.5. Instead, a polynomial curve fit is obtained from the numerically obtained values of
ηmax for Cst < 0.5 as follows

ηmax ≈ 0.7102 + 0.1419(1/Cst) − 0.00247(1/Cst)
2 + 2.13 × 10−5(1/Cst)

3 (12)

Figure 3. ηmax and θmax as functions of Cst.
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Combustion Theory and Modelling 613

2.2. Flame shapes in laboratory coordinates

To obtain flame shapes in laboratory coordinates, axial profiles of velocity and temperature need
to be specified, as does D0. Here D0 is assumed as the mass diffusivity of trace O2 diffusing into
products for NDFs and that of trace fuel diffusing into products for IDFs, both at 298 K. The
mass diffusivities were calculated from CHEMKIN [32]. The diffusivity at any axial location, z
is given by

D = D0(T(z)/T0)1.67 (13)

This study considers two types of axial profiles for temperature, and two for velocity. A discussion
of these profiles used to calculate the flame shapes follows in the next section.

2.2.1. Constant temperature and velocity profiles (Roperu,T ).

The simplest assumption is that of a constant temperature, Tch for the regions of the flame where
diffusion is dominant, and a constant velocity profile, equations (14) and (15):

T(z) = Tch = αTad + (1 − α)T0 = constant; (14)

u(z) = u0 = constant. (15)

Roper et al. [24] assumed Tch = 1500 K for various fuels burning in air under earth gravity.
However, the present flames involve consider both microgravity and earth gravity flames. Thus
no single Tch for all the flames would be appropriate. Therefore, equation (14) was introduced in
this analysis to incorporate a variation in flame temperature for the different cases instead [33].
The value of α was determined using a least-squares fit of the experimental flame lengths for the
flames under the four categories (see Table 4).

The flame length is then given by the expression below [23, 24]

Lf = − u0d2

16D0 ln(1 − Cst)

(
T0

T(z)

)0.67

. (16)

2.2.2. Constant temperature and accelerating velocity profiles (RoperT )

In the Roper analysis, if alternatively the velocity profile is taken to be accelerating as shown in
equation (17) below [23], the flame length is unaffected. The invariance of flame length with axial
velocity profiles for circular burners is also reported by Roper [23]. However, the flame width is

Table 4. Summary of assumptions for the Roper calculations.

Model u(z) T(z) Flame Type Gravity α Tch (K)

RoperT Accelerating Constant NDF 1 g 1.00 2223–3082
Roperu,T Constant Constant NDF µ g 0.68 1631–2191
Roper∗ Accelerating Linear IDF 1 g 0.30 592–716∗

Roperu Constant Linear IDF µ g 0.27 563–674∗

Spalding Deccelerating Constant All All N/A —

∗Mean temperatures.
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614 S. S. Krishnan et al.

narrowed as indicated by equation (6)

u(z) =
[

u2
0 + 2g

(
T(z)

T0
− 1

)
z

] 1
2

(17)

2.2.3. Linear temperature and constant velocity profiles (Roperu)

Since this model allowed variations in the axial temperature, a linear increase in temperature
from T0 at the burner to Tch at the flame tip can be assumed to predict the flame shapes. This
profile does not accurately represent the variation of peak temperature in most real gas-jet flames
but is nevertheless adopted here for simplicity. Defining Tch for this case based on the maximum
temperature (at z = Lf ) results in the expressions below

T(z) = T0 + z

Lf
(Tch − T0); (18)

Lf = − u0d2

16D0 ln(1 − Cst)

(Tch/T0 − 1)

(Tch/T0) 1.67 ln(Tch/T0)
(19)

Further note that the temperature, T(z), used here at each axial location, represents a radially
averaged temperature in the regions over which diffusion is dominant. In the NDFs considered
here, owing to the relatively low convection effects, one may expect the temperatures to remain
high in the radial direction within the flame. This will then result in smaller thermal gradients at a
particular axial location. Thus, a constant temperature assumption may be appropriate for NDFs.
However, due the highly convective nature of the IDFs considered here, there are sharper temper-
ature gradients in the ‘diffusion’ region. Further, the temperature gradients become smaller with
increasing axial location owing to reduced convection effects and increased mixing downstream.
Therefore, a linearly increasing temperature profile may be appropriate for IDFs.

For the linear temperature profile, the conversion from (η, θ ) coordinates to laboratory coor-
dinates is given by the following implicit equation, which is solved iteratively

θ = 4D0

u0d2

Lf

(Tch/T0 − 1)
(T(z)/T0) 1.67 ln(T(z)/T0) . (20)

The value of z is obtained from θ iteratively based on equation (20) for θ above and r is obtained
from equation (6) after substituting for z. A constant velocity profile, equation (15) was assumed
in this analysis.

2.2.4. Linear temperature and accelerating velocity profiles (Roper∗).

In the above analysis, if the velocity profile is taken to be accelerating as in equation (17) above,
the flame length remains unchanged and is obtained from equation (19) above. The flame width
is narrowed as indicated by equation (6).

2.3. The extended Spalding model

Finally the Spalding model flame shape was obtained following Refs [1–5] as follows

rZ′
st / d = (31/2)(z/Lf )((z/Lf )

−1/2 − 1)1/2 (21)
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Combustion Theory and Modelling 615

The flame shapes obtained using the extended Roper model with the four assumptions above
labelled as Roperu,T, RoperT, Roperu and Roper∗ respectively (see Table 4) and the Spalding
model for NDFs and IDFs of ethane (C2H6) in 21% O2 are plotted in Figures 4 and 5 respectively.

In all these cases, the parameter α was adjusted to give a flame length of 21 mm, which matches
closely the experimental observation for NDFs and is useful for the purposes of comparison. One
important observation from Figures 4 and 5 is that although the calculated flame lengths in all
these cases match the experimental flame lengths, the prediction of the flame shapes can be
unrealistic for some cases. While accelerating velocity profiles are most suitable for earth gravity
flames, and constant velocity profiles for microgravity flames, the choice between the constant
and linear temperature profiles is based on a comparison of the experimental and predicted flame
shapes and discussed further in section 2.2.3 above. Figures 4 and 5 include all the four possible
combinations for both NDFs and IDFs for illustration purposes.

The following observations are noted with respect to Figure 4. Constant velocity and constant
temperature profiles (Roperu,T) result in a nearly spherical shape that compares well with the
experimental flame shapes for microgravity NDFs burning in air. Accelerating velocity and
constant temperature profiles (RoperT) result in an elongated flame shape that compares well with
the experimental flame shapes for earth gravity NDFs burning in air. RoperT results in a flame
shape that spreads outwards near the burner tip. This characteristic is unrealistic. Constant velocity
and linear temperature profiles (Roperu) result in an unrealistic flame shape for the microgravity
NDF which is narrow at the base but too broad towards the flame tip. Accelerating velocity and
linear temperature profiles (Roper∗) result in a flame that is broader than the earth gravity NDF.
The Spalding model shapes are unrealistically broad for this NDF in either microgravity or earth
gravity. Based on these observations and the earlier discussions on temperature gradients in NDFs
compared to IDFs, Roperu,T and RoperT models were chosen to best represent microgravity and
earth gravity NDFs respectively.

The following observations are noted with respect to Figure 5. All the predicted IDF flame
shapes are narrower than the corresponding NDF shapes as supported by experimental observa-
tions. There is very little effect of the velocity profile assumption on the calculated IDF flame

Figure 4. Effect of velocity and temperature profiles on shapes in laboratory coordinates of NDFs of C2H6

burning in air.
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616 S. S. Krishnan et al.

Figure 5. Effect of velocity and temperature profiles on shapes in laboratory coordinates of IDFs of air
injecting into C2H6.

shapes as expected by the highly convective nature of the IDFs considered here. Linear tem-
perature profiles lead to realistic shapes for IDFs. Constant temperatures (Roperu,T and RoperT)
lead to unrealistic shapes for IDFs, i.e. the shapes are too broad at the base. The Spalding model
results in reasonable IDF shapes except near the burner exit. Based on these results and the earlier
discussions on temperature gradients in NDFs compared to IDFs, Roperu and Roper∗ models
were chosen to best represent microgravity and earth gravity IDFs respectively.

The Spalding model predictions shown in Figures 4 and 5 assume decelerating velocities
and these result in very wide NDFs. The Spalding model is valid only in the far-field, and the
assumption of the Schilchting velocity profile results in the flame shape converging to zero width
at the origin. Note that these results do not use a virtual origin [1–5].

3. Comparisons with experiments

The experimental shapes (from Ref. [30]) and the extended Roper shapes for C2H6 NDFs with
O2 mole fractions varying between 21 and 100% O2 are shown in Figure 6. The experimental
shapes (from Ref. [30]) and the extended Roper shapes of C2H6 IDFs with O2 mole fractions
varying between 21 and 100% O2 are shown in Figure 7. The horizontal lines indicate the burner
plane (z = 0). Because the extended Roper shapes do not consider soot, they are best evaluated
using blue, not yellow, flame emissions. Stoichiometric conditions are identified by bright blue
contours, e.g., that of the 21% O2 NDF in microgravity. Complete stoichiometric contours are
also visible in the 30% O2 NDF in microgravity, and in all IDFs except the 100% O2 IDFs. Soot
obscures part of the stoichiometric contour in the 21% O2 NDF in earth gravity, but the lowest
7 mm is visible and this contour is expected to reach the axis near the middle of the yellow
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region. Identifying stoichiometric contours is most difficult at 100% O2 owing to bright soot
emissions, and in the case of the 100% O2 NDF in earth gravity, a broad blue haze. For images
where stoichiometric conditions are difficult to identify, referring to flames at lower O2conditions
is generally helpful. Table 4 summarises the assumptions made in calculating the extended Roper
flame shapes for these flames. A least squares error fit of the experimental and calculated flame
lengths gave α =1.00 and α =0.68 for earth gravity and microgravity NDFs. This resulted in Tch

ranging from 2258 – 3082 K for the earth gravity NDFs and ranging from 1631 – 2191 K for the
microgravity NDFs respectively as the O2 mole fraction varied from 21–100% O2. Cooler Tch are
required to match the lengths of the microgravity flames which is consistent with expectations of
cooler flames in microgravity owing to increased radiative heat losses. A least squares error fit
of the experimental and calculated flame lengths gave α = 0.30 and α = 0.27 for earth gravity
and microgravity IDFs. Note that the values of α reported for the IDFs are based on the peak
temperatures at the flame tip. Since the temperature distribution is assumed to be linear in the case
of IDFs, an appropriate basis for comparison of the flame temperatures is the mean temperature.
The resulting mean temperatures ranged from 592–716 K for the earth gravity IDFs and ranged
from 563–674 K for the microgravity IDFs respectively as the O2 mole fraction varied from 21 -
100% O2. Low temperatures were required to match the experimental flame shapes of IDFs and
this aspect is under further study. Since these IDFs are highly convective, no comparisons were
made between the 1g and µg IDFs.

The predicted extended Roper flame shapes of Figures 6 and 7 agree reasonably well with
experimental results in all cases except some earth gravity NDFs. The experimental images of the
microgravity NDFs show the flames attaching below the burner tip owing to axial diffusion Since
axial diffusion is neglected in the Roper model, this characteristic is not seen in the predicted
shapes for the microgravity NDFs. However, the nearly spherical shapes (as opposed to a tear-drop
shape) calculated by the model are in good agreement with the experimental shapes as can be
seen if one shifts the bases of the calculated shapes to match the baselines of the flame images.
The predicted flame shapes of the earth gravity NDFs show less agreement with experiments

Figure 6. Comparisons of Roper shapes of NDFs (using Roperu,T and RoperT for µg and 1 g flames
respectively) with experimental results (in color) of Ref. [30].
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Figure 7. Comparisons of Roper shapes of IDFs (using Roperu and Roper∗ for µg and 1 g flames respec-
tively) with experimental results (in color) of Ref. [30].

especially for higher O2 concentrations and comparisons are further hampered by the yellow soot
region.

Further, it is noted that Froude numbers were in the range of 0.05 to 1.13 for the earth
gravity NDFs and were 13.9 for the earth gravity IDFs (Table 2). This indicates the dominance
of convection over buoyancy for the IDFs and is further evidenced by the nearly identical earth
gravity and microgravity IDF shapes.

4. Conclusions

The Roper flame shape model was extended to predict complete flame shapes of laminar gas
jet normal and inverse diffusion flames on round burners. The Spalding model was extended to
inverse diffusion flames. The main conclusions were:

1. Results of the extended Roper model compared favourably with the experimental shapes
of C2H6 IDFs with varying O2 concentrations and gravity levels. The results of the model
predict the nearly spherical shape of the microgravity NDFs but are unable to predict the back-
diffusion close to the burner. Obscuration of the flame by soot prevented an exact comparison
in the higher oxygen flames. The model predicts the flame lengths of earth-gravity NDFs fairly
accurately, but fails close to the burner. The best fit of the flame shapes yielded a value of
α = 1.0 for NDFs in earth gravity, α = 0.68 for NDFs in microgravity and α = 0.30 for IDFs
in earth gravity and α = 0.27 for IDFs in microgravity. This indicates a trend towards cooler
microgravity flames compared to earth gravity flames with comparable heat release rates.

2. The extended Roper model is favoured over the Spalding model for the present flames.
Although both are capable of predicting flame lengths, the Spalding model overpredicts
widths of NDFs, underpredicts widths of IDFs, and cannot account for changes in flame shape
arising from changes in gravity level.
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3. Reasonable axial velocity and temperature profiles for use in the extended Roper model
were established. Constant temperatures are recommended for NDFs which are dominated by
buoyancy and linearly increasing temperature profiles are recommended for IDFs which are
dominated by convection effects. Accelerating velocity profiles are recommended for earth
gravity flames whereas constant velocities are most suitable for microgravity flames.

4. Flame shapes in the transformed coordinate space predicted by the extended Roper model
are fundamentally different for Cst below and above 0.5. For Cst < 0.5 the model predicts
teardrop-shaped flames without inflection points. For Cst ≥ 0.5, flame contours are predicted
to be broadest at their bases and to have inflection points. Flames with Cst = 0.5 are predicted
to have vertical flame contours at their bases. Normalised Roper flame shapes collapse into
one shape for NDFs of hydrocarbons burning in air (i.e. Cst < 0.1).
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