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A TERNARY FLAME SYSTEM FOR SOOT OXIDATION
STUDIES
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A ternary flame system is presented that allows observations of soot oxidation in a hydrogen
diffusion flame in the absence of hydrocarbons. A propylene/air laminar jet diffusion flame
emits a soot column with a diameter of 3 mm that passes through a ring burner supporting
a hydrogen diffusion flame. The soot oxidizes in a region that is 60 mm long, laminar,
steady, axisymmetric, and accessible for optical and sampling diagnostics. Temperatures
and soot loading can be controlled nearly independently in this region and a broad range of
mixture fraction is encountered without interference from soot formation.
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INTRODUCTION

An improved understanding of pollutant and radiative emissions from flames and fires
will require an improved understanding of soot nucleation, growth, and oxidation. A recent
study compared the predictions of 36 detailed gas and soot kinetic models with measurements
from eight laminar diffusion and premixed flames (Mehta et al., 2009). No model matched
the measured peak soot volume fractions within a factor of five for all eight flames. Similar
discrepancies were encountered by both Crookes (2006) and D’Anna et al. (2007).

Improved soot oxidation measurements could lead to improved rate models for both
soot oxidation and soot formation. This is because most measurements of soot growth
rates in flames are in regions with significant soot oxidation (e.g., Kim et al., 2004, 2008;
Xu et al., 1997).

One of the most widely used models of soot oxidation rates is questionable because
it did not consider soot, aerosols, or gas-phase reactions. Nagle and Strickland-Constable
(1962) instead inferred soot oxidation rates by O2 by observing the oxidation of various
heated carbon rods in oxygen jets. This model disagrees with many soot aerosol measure-
ments; for example, it overpredicts the measurements of Lee et al. (1962) and Puri et al.
(1994), while underpredicting those of Park and Appleton (1973) and Camacho et al.
(2014). Soot oxidation by O2 has also been studied using thermogravimetic analysis
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(Jaramillo et al., 2014; Kalogirou and Samaras, 2010; Sharma et al., 2012), but tempera-
tures were below 1000 K and this environment is very different from a flame.

Another widely used model is the OH mechanism of Neoh (1980) and Neoh et al.
(1984), who observed a two-stage premixed flame system. After correcting for O2 soot
oxidation using the model of Nagle and Strickland-Constable (1962), OH was found to be the
principal soot oxidizer, with an average collision efficiency of 0.13. Echavarria et al. (2011,
2012) used a similar premixed flame setup, but did not examine soot oxidation kinetics. In
both studies soot deposition prevented the observation of long-term steady flames and
uncertainties were increased because the soot oxidation region was only 5 mm long.

Soot oxidation rates have also been measured in hydrocarbon diffusion flames (Garo
et al., 1990; Kim et al., 2004, 2008; Lee et al., 1962; Puri et al., 1994, 1995; Xu et al.,
2003). Most of these measurements were in the presence of hydrocarbons, requiring
significant corrections for soot growth. Some of the measurements were in very lean
regions without hydrocarbons, but these involved low temperatures, low soot loadings,
and late-stage soot that may not represent typical soot in diffusion flames.

Recognizing these gaps in understanding, the objective of this study is to develop a
ternary flame system that allows soot oxidation to be observed in a diffusion flame in the
absence of soot formation. Detailed measurements in this system could lead to improved
soot oxidation models.

EXPERIMENTAL

This ternary flame system involves three flames burning steadily in air at 1.01 bar: a
propylene diffusion flame, a hydrogen diffusion flame, and a soot flame. A sooting
propylene/air laminar jet diffusion flame was established on a coflow burner (Santoro
et al., 1983), consisting of concentric brass tubes with inside diameters of 14 and
101.6 mm. The fuel port had a blunt tip with a wall thickness of 1.5 mm. The flow of
propylene (2.1 mg/s, 99.5% purity) through the inner tube was surrounded by coflowing
air (1.18 g/s). The propylene flame had a luminous length of about 50 mm and emitted
soot in a vertical column.

A ring burner was fabricated as shown in Figure 1. For this, a round brass rod was
cut to length and drilled on center. The plenum groove was milled, and 41 jet holes and the
tapered port were drilled. A short section of the rod was drilled on center and welded in
place to form the plenum. The calculated pressure drop through each hole exceeded 10
times that across the plenum. The ring burner was positioned with its upper face 80 mm
above the coflow burner and on the same axis. Hydrogen (1.48 mg/s, 99.9995% purity)
was delivered to the ring burner with its flow (like that of the propylene and the air)
controlled with a pressure regulator and a needle valve. Flow rates were measured with
rotameters that were calibrated with a soap bubble meter.

RESULTS AND DISCUSSION

The performance of the ring burner was tested with hydrogen and with methane for
improved flame visibility. Flame asymmetries were present for ring flames shorter than
10 mm, while flickering occurred for those longer than 70 mm. Only flames longer than
25 mm had stoichiometric regions that extended to the burner axis. The stoichiometric
length of the hydrogen flame used in the ternary flame system was determined with gas
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chromatography to be approximately 30 mm, but visual confirmation was impossible
owing to the dim and broadened reaction zones of the hydrogen diffusion flame.

Figure 2 is a color image of the ternary flame system. The soot flame was laminar,
axisymmetric, and optically thin. It was steady to a height of 60 mm above the ring burner.
It reached a maximum diameter of 3.3 mm at a height of 13 mm and then narrowed. The
soot flame has been characterized with spatially resolved measurements, as reported in
Guo (2015). These measurements (and their ranges) were as follows: temperatures (1500–
1725 K), soot volume fractions (1–15 ppm), velocities (2–3 m/s), primary particle
diameters (20–45 nm), and concentrations of N2, H2O, CO2, O2, CO, and H2. This flame’s
open accessibility facilitates soot and gas sampling and optical diagnostics. It allows the
observation of soot oxidation in a diffusion flame far separated from soot formation
regions.

The temperature (measured with a K-type thermocouple) on the axis at the entrance
to the ring burner was 300 °C, indicating that most of the gaseous products of the
propylene diffusion flame had been replaced by N2 and O2. This reduced the hydrocarbon
and CO2 concentrations in the soot flame, which otherwise would have contributed to soot
formation and oxidation.

Soot loading and temperature can be controlled independently in the soot flame.
Soot loading can be adjusted by changing the propylene flow rate or by using a different
fuel. Temperature can be adjusted by changing the hydrogen flow rate or by introducing
oxygen or diluent into the air or hydrogen supply. A variety of conditions have been tested
by Guo (2015). The propylene supply was replaced with acetylene with flow rates of
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Figure 1 Schematic of the ring burner, with dimensions in mm.
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2.2–2.6 mg/s. Hydrogen flow rates were varied from 1.5–2.2 mg/s. The resulting soot
volume fractions were as high as 70 ppm, and the peak soot temperatures varied between
1200–1800 K. Modifications to this flame system could allow it to be used for studies of
soot growth, nanoparticle processing, or other aerosol physics experiments.
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