
Errors for Linear Systems

When we solve a linear system Ax = b we often do not know A and b exactly, but have only approximations Â and b̂ available.
Then the best thing we can do is to solve Âx̂ = b̂ exactly which gives a different solution vector x̂. We would like to know how
the errors of Â and b̂ influence the error in x̂.

Example: Consider the linear system Ax = b with[
1.01 .99
.99 1.01

][
x1
x2

]
=

[
2
2

]
.

We can easily see that the solution is x =
[

1
1

]
. Now let us use the slightly different right hand side vector b̂ =

[
2.02
1.98

]
and

solve the linear system Ax̂ = b̂. This gives the solution vector x̂ =

[
2
0

]
. In this case a small change in the right hand side

vector has caused a large change in the solution vector.

Vector norms

In order to measure errors in vectors by a single number we use a so-called vector norm.

A vector norm ‖x‖ measures the size of a vector x ∈ Rn by a nonnegative number and has the following properties

‖x‖= 0 ⇒ x = 0

‖αx‖= |α|‖x‖
‖x+ y‖ ≤ ‖x‖+‖y‖

for any x,y ∈ Rn, α ∈ R. There are many possible vector norms. We will use the three norms ‖x‖1, ‖x‖2, ‖x‖
∞

defined by

‖x‖1 = |x1|+ · · ·+ |xn|

‖x‖2 =
(
|x1|2 + · · ·+ |xn|2

)1/2

‖x‖
∞
= max{|x1| , . . . , |xd |}

If we write ‖x‖ in an equation without any subscript, then the equation is valid for all three norms (using the same norm
everywhere).

If the exact vector is x and the approximation is x̂ we can define the relative error with respect to a vector norm as ‖x̂−x‖
‖x‖ .

Example: Note that in the above example we have ‖b̂−b‖
∞

‖b‖
∞

= 0.01, but ‖x̂−x‖
∞

‖x‖
∞

= 1. That means that the relative error of the
solution is 100 times as large as the relative error in the given data, i.e., the condition number of the problem is at least 100.

Matrix norms

A matrix norm ‖A‖ measures the size of a matrix A ∈ Rn×n by a nonnegative number. We would like to have the property

‖Ax‖ ≤ ‖A‖‖x‖ for all x ∈ Rn (1)

where ‖x‖ is one of the above vector norms ‖x‖1 ,‖x‖2 ,‖x‖∞
. We define ‖A‖ as the smallest number satisfying (1):

‖A‖ := sup
x∈Rn

x 6=0

‖Ax‖
‖x‖

= max
x∈Rn

‖x‖=1

‖Ax‖

By using the 1, 2, ∞ vector norm in this definition we obtain the matrix norms ‖A‖1, ‖A‖2, ‖A‖
∞

(which are in general different
numbers). It turns out that ‖A‖1 and ‖A‖

∞
are easy to compute:
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Theorem:

‖A‖
∞
= max

i=1,...,n
∑

j=1,...,n

∣∣ai j
∣∣ (maximum of row sums of absolute values)

‖A‖1 = max
j=1,...,n

∑
i=1,...,n

∣∣ai j
∣∣ (maximum of column sums of absolute values)

Proof: For the infinity norm we have

‖Ax‖
∞
= max

i

∣∣∣∣∣∑j
ai jx j

∣∣∣∣∣≤max
i

∑
j

∣∣ai j
∣∣ ∣∣x j

∣∣≤(max
i

∑
j

∣∣ai j
∣∣)‖x‖

∞

implying ‖A‖
∞
≤ maxi ∑ j

∣∣ai j
∣∣. Let i∗ be the index where the maximum occurs and define x j = signai∗ j, then ‖x‖

∞
= 1 and

‖Ax‖
∞
= maxi ∑ j

∣∣ai j
∣∣.

For the 1-norm we have

‖Ax‖1 = ∑
i

∣∣∣∣∣∑j
ai jx j

∣∣∣∣∣≤∑
j

(
∑

i

∣∣ai j
∣∣)∣∣x j

∣∣≤(max
j

∑
i

∣∣ai j
∣∣)‖x‖1

implying ‖A‖1 ≤max j ∑i
∣∣ai j
∣∣. Let j∗ be the index where the maximum occurs and define x j∗ = 1 and x j = 0 for j 6= j∗, then

‖x‖1 = 1 and ‖Ax‖1 = max j ∑i
∣∣ai j
∣∣. �

We will not use ‖A‖2 since it is more complicated to compute (it involves eigenvalues).

Note that for A,B ∈ Rn×n we have ‖AB‖ ≤ ‖A‖‖B‖ since

‖ABx‖ ≤ ‖A‖‖Bx‖= ‖A‖‖B‖‖x‖ .

The following results about matrix norms will be useful later:

Lemma 1: Let A ∈ Rn×n be nonsingular and E ∈ Rn×n. Then ‖E‖< 1
‖A−1‖ implies that A+E is nonsingular.

Proof: Assume that A+E is singular. Then there exists a nonzero x ∈ Rn such that (A+E)x = 0 and hence

‖x‖
‖A−1‖ ≤

‖Ax‖= ‖Ex‖ ≤ ‖E‖‖x‖

The left inequality for b := Ax follows from ‖x‖=
∥∥A−1b

∥∥≤ ∥∥A−1
∥∥‖b‖. As ‖x‖> 0 we obtain 1

‖A−1‖ ≤ ‖E‖.�

Lemma 2: For given vectors x,y ∈ Rn with x 6= 0 there exists a matrix E ∈ Rn×n with Ex = y and ‖E‖= ‖y‖
‖x‖ .

Proof: For the infinity-norm we have ‖x‖
∞
=
∣∣x j
∣∣ for some j. Let a ∈ Rn be the vector with a j = 1, ak = 0 for j 6= k and let

E =
1
‖x‖

ya>,

then (i) a>x = ‖x‖
∞

implies Ex = y and (ii)
∥∥ya>v

∥∥
∞
=
∣∣a>v

∣∣‖y‖
∞

with
∣∣a>v

∣∣≤ ‖v‖
∞

implies ‖E‖ ≤ ‖y‖‖x‖ .
For the 1-norm we use a ∈ Rn with a j = sign(x j) since a>x = ‖x‖1 and

∣∣a>v
∣∣≤ ‖v‖1.

For the 2-norm we use a = x/‖x‖2 since a>x = ‖x‖2 and
∣∣a>v

∣∣≤ ‖a‖2 ‖v‖2 = ‖v‖2.�

Condition numbers

Let x denote the solution vector of the linear sytem Ax = b. If we choose a slightly different right hand side vector b̂ then we
obtain a different solution vector x̂ satisfying Ax̂ = b̂. We want to know how the relative error

∥∥b̂−b
∥∥/‖b‖ influences the

relative error ‖x̂− x‖/‖x‖ (“error propagation”). We have A(x̂− x) = b̂−b and therefore

‖x̂− x‖=
∥∥A−1(b̂−b)

∥∥≤ ∥∥A−1∥∥∥∥b̂−b
∥∥ .
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On the other hand we have ‖b‖= ‖Ax‖ ≤ ‖A‖‖x‖. Combining this we obtain

‖x̂− x‖
‖x‖

≤ ‖A‖
∥∥A−1∥∥ ∥∥b̂−b

∥∥
‖b‖

.

The number cond(A) := ‖A‖
∥∥A−1

∥∥ is called condition number of the matrix A. It determines how much the relative error
of the right hand side vector can be amplified. The condition number depends on the choice of the matrix norm: In general
cond1(A) := ‖A‖1

∥∥A−1
∥∥

1 and cond∞(A) := ‖A‖
∞

∥∥A−1
∥∥

∞
are different numbers.

Example: In the above example we have

cond∞(A) = ‖A‖∞

∥∥A−1∥∥
∞
=

∥∥∥∥[ 1.01 .99
.99 1.01

]∥∥∥∥
∞

∥∥∥∥[ 25.25 −24.75
−24.75 25.25

]∥∥∥∥
∞

= 2 ·50 = 100

and therefore
‖x̂− x‖
‖x‖

≤ 100

∥∥b̂−b
∥∥

‖b‖

which is consistent with our results above (b and b̂ were chosen so that the worst possible error magnification occurs).

The fact that the matrix A in our example has a large condition number is related to the fact that A is close to the singular

matrix B =

[
1 1
1 1

]
.

The following result shows that 1
cond(A) indicates how close A is to a singular matrix:

Theorem: min
B∈Rn×n, B singular

‖A−B‖
‖A‖

=
1

cond(A)
Proof: (1) Lemma 1 shows: B singular implies ‖A−B‖ ≥ 1

‖A−1‖ .

(2) By the definition of
∥∥A−1

∥∥ there exist x,y ∈ Rn such that x = A−1y and
∥∥A−1

∥∥ = ‖x‖
‖y‖ . By Lemma 2 there exists a matrix

E ∈ Rn×n such that Ex = y and ‖E‖ = ‖y‖
‖x‖ . Then B := A−E satisfies Bx = Ax−Ex = y− y = 0, hence B is singular and

‖A−B‖= ‖E‖= 1
‖A−1‖ . �

Example: The matrix A =

[
1.01 .99
.99 1.01

]
is close to the singular matrix B =

[
1 1
1 1

]
so that ‖A−B‖

∞

‖A‖
∞

= .02
2 = .01. By the

theorem we have that 0.01 ≤ 1
cond∞(A)

or cond∞(A) ≥ 100. As we say above we have cond∞(A) = 100, i.e., the matrix B is
really the closest singular matrix to the matrix A.

When we solve a linear system Ax = b we have to store the entries of A and b in the computer, yielding a matrix Â with
rounded entries âi j = f l(ai j) and a rounded right hand side vector b̂. If the original matrix A is singular then the linear system
has no solution or infinitely many solutions, so that any computed solution is meaningless. How can we recognize this on a
computer? Note that the matrix Â which the computer uses may no longer be singular.

Answer: We should compute (or at least estimate) cond(Â). If cond(Â)< 1
εM

then we can guarantee that any matrix A which
is rounded to Â must be nonsingular:

∣∣âi j−ai j
∣∣ ≤ εM

∣∣ai j
∣∣ implies

∥∥Â−A
∥∥ ≤ εM ‖A‖ for the infinity or 1-norm. Therefore

‖Â−A‖
‖Â‖ ≤

εM
1−εM

≈ εM and cond(Â) < 1−εM
εM
≈ 1

εM
imply ‖Â−A‖

‖Â‖ < 1
cond(Â)

. Hence the matrix A must be nonsingular by the

theorem.

Now we assume that we perturb both the right hand side vector b and the matrix A:

Theorem: Assume Ax = b and Âx̂ = b̂. If A is nonsingular and
∥∥Â−A

∥∥< 1/
∥∥A−1

∥∥ there holds

‖x̂− x‖
‖x‖

≤ cond(A)

1− cond(A)‖Â−A‖
‖A‖

(∥∥b̂−b
∥∥

‖b‖
+

∥∥Â−A
∥∥

‖A‖

)
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Proof: Let E = Â−A, hence Ax̂ = b̂−Ex̂. Subtracting Ax = b gives A(x̂− x) = (b̂−b)−Ex̂ and therefore

‖x̂− x‖ ≤
∥∥A−1∥∥(∥∥b̂−b

∥∥+‖E‖ ‖x̂‖︸︷︷︸
≤ ‖x‖+‖x̂− x‖

)
(

1−‖A−1‖‖E‖
)
‖x̂− x‖ ≤

∥∥A−1∥∥(∥∥b̂−b
∥∥+‖E‖‖x‖)

Dividing by ‖x‖ and using ‖b‖ ≤ ‖A‖‖x‖ ⇐⇒ ‖x‖ ≥ ‖b‖/‖A‖ gives(
1−‖A−1‖‖E‖

)
‖x̂− x‖
‖x‖

≤
∥∥A−1∥∥( ∥∥b̂−b

∥∥
‖b‖/‖A‖

+‖E‖
)

(
1− cond(A)

‖E‖
‖A‖

)
‖x̂− x‖
‖x‖

≤ cond(A)

(∥∥b̂−b
∥∥

‖b‖
+
‖E‖
‖A‖

)

If ‖E‖< 1/‖A−1‖⇐⇒ ‖E‖
‖A‖ < 1/cond(A) we can divide by

(
1− cond(A)‖E‖‖A‖

)
.�

If cond(A)‖Â−A‖
‖A‖ � 1 we have that both the relative error in the right hand side vector and in the matrix are magnified by

cond(A).

If cond(A)‖Â−A‖
‖A‖ =

∥∥A−1
∥∥∥∥Â−A

∥∥≥ 1 then by the theorem for the condition number the matrix Â may actually be singular,
so that the solution x̂ is no longer well defined.

Computing the condition number

We have seen that the condition number is very useful: It tells us what accuracy we can expect for the solution, and how close
our matrix is to a singular matrix.

In order to compute the condition number we have to find A−1. This takes n3 +O(n2) operations, compared with n3

3 +O(n2)
operations for the LU-decomposition. Therefore the computation of the condition number would make the solution of a linear
system 3 times as expensive. For large problems this is not reasonable.

However, we do not need to compute the condition number with full machine accuracy. Just knowing the order of magnitude
is sufficient. Since

∥∥A−1
∥∥ = max‖z‖=1

∥∥A−1z
∥∥ we can pick any vector z with ‖z‖ = 1 and have the lower bound ‖A‖ ≥∥∥A−1z

∥∥. Note that u = A−1z is the solution of the linear system Au = z. If we already have L,U, p we can easily find u using
u=U\(L\b(p)) with a cost of only n2 +O(n) operations. The trick is to pick z with ‖z‖ = 1 such that

∥∥A−1z
∥∥ becomes as

large as possible, so that it is close to
∥∥A−1

∥∥. There are heuristic methods available which achieve fairly good lower bounds:
(i) Pick c = (±1, . . . ,±1) and pick the signs so that the forward susbstitution gives a large vector, (ii) picking c̃ := z and solve
Az̃ = c̃ often improves the lower bound. The Matlab functions condest(A) and 1/rcond(A) use similar ideas to give lower
bounds for cond1(A). Typically they give an estimated condition number c with c ≤ cond1(A) ≤ 3c and require the solution
of 2 or 3 linear systems which costs O(n2) operations if the LU decomposition is known. (However, the Matlab commands
condest and rcond only use the matrix A as an input value, so they have to compute the LU decomposition of A first and
need n3

3 +O(n2) operations.)

Computation in machine arithmetic and residuals

When we run Gaussian elimination on a computer each single operation causes some roundoff error, and instead of the exact
solution x of a linear system we only get an approximation x̂. As explained above we should select the pivot candidate with
the largest absolute value to avoid unnecessary subtractive cancellation, and this usually is a numerically stable algorithm.
However, there is no theorem which guarantees this for partial pivoting (row interchanges). (For “full pivoting” with row and
column interchanges some theoretical results exist. However, this algorithm is more expensive, and for all practical examples
partial pivoting seems to work fine.)
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Question 1: How much error do we have to accept for ‖x̂−x‖
‖x‖ ? This is the unavoidable error which occurs even for an

ideal algorithm where we only round the input values and the output value to machine accuracy, and use infinite accuracy for
all computations.

When we want to solve Ax = b we have to store the entries of A,b in the computer, yielding a matrix Â and a right hand side

vector b̂ of machine numbers so that ‖Â−A‖
‖A‖ ≤ εM and ‖b̂−b‖

‖b‖ ≤ εM. An ideal algorithm would then try to solve this linear

system exactly, i.e., compute a vector x̂ such that Âx̂ = b̂. Then we have

‖x̂− x‖
‖x‖

≤ cond(A)
1− cond(A)εM

(εM + εM)≈ 2cond(A)εM

if cond(A)� 1/εM. Therefore the unavoidable error is 2cond(A)εM.

Question 2: After we computed x̂ how can we check how good our computation was? The obvious thing to check is
b̂ := Ax̂ and to compare it with b. The difference r = b̂−b is called the residual. As Ax = b and Ax̂ = b̂ we have

‖x̂− x‖
‖x‖

≤ cond(A)

∥∥b̂−b
∥∥

‖b‖

where
∥∥b̂−b

∥∥/‖b‖ is called the relative residual. We can compute (or at least estimate) cond(A), and therefore can obtain an
upper bound for the error ‖x̂− x‖/‖x‖. Actually, we can obtain a slightly better estimate by using

‖x̂− x‖=
∥∥A−1 (b̂−b

)∥∥≤ ∥∥A−1∥∥∥∥b̂−b
∥∥ =⇒ ‖x̂− x‖

‖x̂‖
≤ cond(A)

∥∥b̂−b
∥∥

‖A‖‖x̂‖

with the weighted residual ρ :=

∥∥b̂−b
∥∥

‖A‖‖x̂‖
. Note that ‖x̂− x‖/‖x̂‖ ≤ δ implies for δ < 1

‖x̂− x‖ ≤ δ ‖x+(x̂− x)‖ ≤ δ (‖x‖+‖x̂− x‖) =⇒ ‖x̂− x‖
‖x‖

≤ δ

1−δ

which is the same as δ up to higher order terms O(δ 2).

If
∥∥b̂−b

∥∥/‖b‖ is not much larger than εM then the computation was numerically stable: Just perturbing the input slightly
from b to b̂ and then doing everything else exactly would give the same result x̂.

But it can happen that the relative residual is much larger than εM, and yet the computation is numerically stable. We obtain a
better way to measure numerical stability by considering perturbations of the matrix A:

Assume we have a computed solution x̂. If we can find a slightly perturbed matrix Ã such that∥∥Ã−A
∥∥

‖A‖
≤ ε, Ãx̂ = b (2)

where ε not much larger than εM, then the computation is numerically stable: Just perturbing the matrix within the roundoff
error and then doing everything exactly gives the same result as our computation.

How can we check whether such a matrix Ã exists? We again use the “weighted residual”

ρ :=

∥∥b̂−b
∥∥

‖A‖‖x̂‖
.

Then ρ is the minimal size of a perturbation ‖Ã−A‖
‖A‖ giving Ãx̂ = b, i.e.,

1. If x̂ is the solution of a slightly perturbed problem Ãx̂ = b we have ‖Ã−A‖
‖A‖ ≥ ρ .

2. There is a matrix Ã with ‖Ã−A‖
‖A‖ = ρ such that Ãx̂ = b.

Proof:
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1. Let E = Ã−A. Then (A+E)x̂ = b or b̂−b =−Ex̂ yielding

∥∥b̂−b
∥∥≤ ‖E‖‖x̂‖ , ρ =

∥∥b̂−b
∥∥

‖A‖‖x̂‖
≤ ‖E‖‖A‖

.

2. Let y := b− b̂. Using Lemma 2 we get a matrix E with Ex̂= y and ‖E‖= ‖y‖
‖x̂‖ . Then Ã :=A+E satisfies Ãx̂= (A+E)x̂=

b̂+(b− b̂) = b and ‖E‖‖A‖ =
‖b−b̂‖
‖x̂‖‖A‖ = ρ .

Summary

• Recommended method for solving linear systems on a computer:

1. Given A find L,U, p using Gaussian elimination with pivoting, choosing the pivot candidate with the largest
absolute value.

2. Solve Lu = b̃ (where b̃i = bpi) by forward substitution and Ux = y by back substitution.

• DO NOT compute the inverse matrix A−1. This takes about 3 times as long as computing the LU decomposition.

• The condition number cond(A) = ‖A‖
∥∥A−1

∥∥ characterizes the sensitivity of the linear system:

– If Ax = b and Ax̂ = b̂ we have
‖x̂− x‖
‖x‖

≤ cond(A)

∥∥b̂−b
∥∥

‖b‖
.

– The unavoidable error due to the rounding of A and b is approximatively 2cond(A)εM.

– If cond(Â)≥ 1/εM then the matrix Â could be the machine representation of a singular matrix A, and the computed
solution is usually meaningless.

– To check whether a matrix A is singular, up to a perturbation within machine accuracy:

* DO NOT use the determinant detA

* DO NOT use the pivot elements u j j obtained by Gaussian elimination

* DO use the condition number: cond(A)≥ 1/εM ⇐⇒ there exists a singular matrix Ã with ‖Ã−A‖
‖A‖ ≤ εM

• Compute an approximation cond1 to the the condition number cond1(A) = ‖A‖1

∥∥A−1
∥∥

1 using
cond1 = norm(A,1)*invnormest(L,U) (you need to download invormest.m from course web page).
This avoids computing A−1 which is very expensive. We have already computed L,U , and invnormest(L,U) uses this
to solve a few linear systems, yielding a good approximation of

∥∥A−1
∥∥

1 .

• In order to check the accuracy of a computed solution x̂ compute the residual r := Ax̂−b and the weighted residual
ρ := ‖r‖

‖A‖‖x̂‖ .

– we get an error bound ‖x̂−x‖
‖x̂‖ ≤ cond(A)ρ

– if ρ is not much larger than εM the computation is numerically stable: Perturbing A and b with a relative error
εM would cause the same error.

– if ρ is much larger than εM the computation is numerically unstable: The error is much larger than the error
resulting from the uncertainty of the input values.
We can obtain a more accurate result by iterative improvement: Let r := Ax̂− b and solve Ae = r using the
existing LU decomposition. Then let x̂ := x̂− e.

• Gaussian elimination with the pivoting strategy of choosing the largest absolute value is in almost all cases numerically
stable. We can check this by computing the weighted residual ρ . If ρ is much larger than εM we can compute a
numerically stable result by using iterative improvement.
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