

Research Overview

Sheryl Ehrman, Keystone Professor and Chair

sehrman@umd.edu, +1 301 405 1917

ChBE Fast Facts

13 faculty + 1 joining January 2011

~ 320 undergraduate students

42 PhD, 14 MS students

~ 2.1 M external research expenditures FY 2010

Faculty

Raymond A. Adomaitis
Professor, Associate Chair for Graduate
Studies
Systems modeling and simulation;

semiconductor and thin film processing

Kyu Yong Choi
Professor, Associate Chair for
Undergraduate Studies
Macromolecular and polymer reaction
engineering, polymer nanomaterials

Mikhail Anisimov
Professor
Mesoscopic and nanoscale
thermodynamics, critical
phenomena, and phase transitions
in soft matter

Panagiotis Dimitrakopoulos
Associate Professor
Computational fluid dynamics, bio/
micro-fluidics, biophysics and numerical
analysis

Richard V. Calabrese Professor Multiphase flow, turbulent and mixing, computational fluid dynamics

Sheryl H. Ehrman Keystone Professor and Chair Aerosol and nanoparticle technology, air pollution

Faculty www.chbe.umd.edu

Srinivasa R. Raghavan
Associate Professor
Patrick and Marguerite Sung Chair
Complex fluids, polymeric and
biomolecular self-assembly, soft
nanostructures

Erich Wachsman
Professor
William L. Crentz Centennial Chair in
Energy Research
Electrochemistry, solid oxide fuel cell
development

Nam Sun Wang Associate Professor Biochemical engineering

William A. Weigand
Professor
Biochemical engineering, bioprocess
control and optimization

Jeffrey Klauda Assistant Professor Biophysics and thermodynamics

Ganesh Sriram
Assistant Professor
Systems biology and metabolic
engineering

Chunsheng Wang Assistant ProfessorEnergy conversion and storage

Dongxia Liu
Assistant Professor
Zeolite materials for catalysis and separations

Department Research Strengths

nanotechnology

complex fluids biomolecular engineering

systems engineering

Engineering Strategic Research Areas:

Biotechnology
Nanotechnology
Sustainably engineered
systems

Some current research interests:

- Energy: Li-ion batteries, biofuels, solar hydrogen
- CO₂ sequestration and storage
- Nanomaterials and biological barriers

Energy Storage: Li-ion Battery Materials and Systems

Chunsheng Wang - ChBE, in collaboration with:

Kyu Yong Choi - ChBE

Sheryl Ehrman - ChBE

Srini Raghavan - ChBE

Reza Ghodssi - ISR/ECE

James Culver - Plant Science and Landscape

Architecture

Peter Kofinas - BIOE

Kang Xu - Army Research Laboratory, Adelphi MD

Research Battery History and Future

Li-ion Battery Research

20(2010)5035 8. Electrochemistry

Communications, 12(2010)98

Research on Next Generation Li-ion Batteries

Energy: Using systems biology to investigate nitrogen efficiency in a bioenergy feedstock

- Overarching objective: Engineering trees with improved nitrogen use efficiency and biomass productivity
- Poplar is a future bioenergy feedstock
 - Does not require farmland, does not conflict with food supply
 - Nitrogen crucially determines productivity
 - Quantification of metabolic and regulatory networks
- Collaboration with Ganesh Sriram,
 ChBE and Professor Gary Coleman
 (Plant Sciences, University of Maryland), expert in poplar molecular biology
- Funded by NSF Plant Genome Project award

Picture from article in The Baltimore Sun

Energy: Solar Hydrogen Generation

Modeling and experimental development of earth abundant semiconductor materials for solar splitting of water to produce hydrogen and oxygen. Adomaitis, Ehrman, ChBE, Zachariah (ME/CHEM)

CO₂ Sequestration and Storage

Richard V. Calabrese, ChBE

Prediction (CFD) & measurement of turbulent velocity fields

Particle-fluid & gas/liquid-liquid dispersion

Modeling of particle scale transport phenomena

Kyu Yong Choi, ChBE

Polymer Reaction Engineering

Design and development of polymer substrates

Jeffrey B. Klauda, ChBE

Multi-scale modeling & molecular simulation

Gas hydrates

Others: Adomaitis, Dimitrakopoulos, Ehrman

Development of Novel Carbon Capture Technologies Requires a Continuum of Effort Across Multiple Length Scales

Pre-combustion capture

Post-combustion capture

Solid sorbents and liquid solvents

Membranes

Solvent impregnated substrates

Molecular Sc	ale	Particle Scale	Device Scale	Plant Scale
Materials disco	very	Engineered particles & membranes	Design of fixed/ fluidized beds, packed/tray towers & membrane trains	Process integration
Materials characterizati	on	Single particle behavior – thermodynamics; transport & reaction rates	Pilot scale design & demonstration	Plant scale design & demonstration
Molecular simula computationa screening		Particle scale rate models	CFD modeling	Process simulation

Functionalized Ultra-Porous Silica as a Novel Absorbent for CO2 Capture

K. Y. Choi, Professor
Polymer Reaction Engineering Laboratory
Department of Chemical & Biomolecular Engineering
University of Maryland

Synthesis of Inverse Opal-Like 3D-Particle Structure

Formation of micron-sized polymer particles with controlled internal structures that encapsulate inorganic precursors (sacrificial template).

Core-shell pomegranate-like structures synthesized by Micro-dispersive polymerization in confined reaction space (MDPCRS)

Catalytic reaction of the inorganic precursor and selective removal of the polymeric template.

Ultra-Porous Inverse Opal-Like Silica (UP-IOS)

Bulk density: <0.05 g/cm³

Specific area: ~ 600 m²/g

Size: 50-500 um

Packing material for absorption columns?

	Raschig rings	Intallox Sadlle	Pro-Pak	Silica Gel (Davisil® 643)	UP-IOS
Specific area (m²/g)	7.4×10 ⁻⁴	1.0×10 ⁻³	3.3×10 ⁻³	300	600

Sources: - Park et al. *Prepr. Pap.-Am. Chem. Soc. Div. Fuel Chem.* **2004**, 49 (1), 249.

- www.sigmaaldrich.com

Absorption-Desorption Systems

Absorption-desorption systems can be inverted to regenerate the ultra-porous inverse-opal silica particles.

Sequestering CO₂ in the Seafloor

Multi-scale Modeling of CO₂ Hydrates (Jeff Klauda)

- Sub-atomic/Atomic-Level
 - Develop accurate guest-host potentials from high-level quantum mechanical methods¹
 - Accurately describe CH₄/CO₂ adsorption in gas hydrate cavities
- Molecular-Level
 - Molecular dynamics simulations of CH₄/CO₂ hydrates
 - Compare crystal growth rates of these hydrates in equilibrium with water solution and gas (CH_4/CO_2) or liquid (CO₂)
 - Determine how pore structure and sediment type (clay/sand) influence crystal growth

Nanomaterials and Biological Barriers

Srini Raghavan, ChBE Nam Sun Wang, ChBE Jeff Klauda, ChBE Ganesh Sriram, ChBE Sheryl Ehrman, ChBE John Fisher, BIOE Oded Rabin, MSE

Objectives:

- (1) Systems level understanding of mechanisms of toxicity of nanomaterials
- (2) Engineered materials for delivery of drugs, vaccines

Live/dead stain of chondrocytes cultured with a) silica NPs b) silica NPs + cisplatin and c) cisplatin Bhowmick et al., J Nanoparticle Research, in press, 2010

High throughput approach for rapid screening of toxicity, property/response relationships

Systems bio approach: Molecular understanding of toxicity mechanisms

Delivery of Drugs, Vaccines, and Cosmetics by Liposomes

- Skin Delivery
 - Allows for delivery without ingestion or needles
 - Must cross the skin barrier to be delivered by the blood stream
 - Lipid/surfactant nanocontainers (liposomes) offer one route for skin delivery
 - These nanocontainers must first pass though the upper skin layer (stratum corneum)

- Traversing the Stratum Corneum
 - Optimize liposome components to allow for penetration to the epidermis
 - Aim is to understand at a fundamental level how these liposomes move through the lipid pores of the stratum corneum

Fluorescently tagged Liposome Skin Transport
Dr. Srini Raghavan

Liposome and Skin Multilayer Molecular Simulations
Dr. Jeffery Klauda

Thanks!

For more information sehrman@umd.edu, +1 301 405 1917

