Nanostructured Zr doped α-Fe₂O₃ Thin Films for PEC Generation of Hydrogen Praveen Kumar Dept. of Physics & Comp. Science, D E I, Dayalbagh, Agra

<u>Outline</u>

- \Box Zr doped α -Fe₂O₃ Thin Film in PEC
- Experimental Study
 - ✓ Thin Film Preparation
 - ✓ Characterization (XRD,UV visible, SEM, XPS)
 - ✓ PEC Study (Mott-schottky, I-V Curves)
- □ Results/Conclusion

Thin Film Preparation

Spray Pyrolysis Unit

Spray Parameters	Optimal
	Values
Molarity of iron nitrate	0.15M
solution	
Substrate temperature	350 °C
Distance of nozzle from	25 cm
substrate	
Flow rate from burette	5.4 ml/min
Air pressure	2.0 kg/cm^2
Duration of each spray	10 sec
Total spray time	100 sec

Zr doping: 1.0, 2.0, 5.0 and 10.0 at % zirconyl chloride octahydrate was added to precursor solution

The prepared thin films were annealed in muffle furnace at 500 °C for 2 hours

Characterization Cont.....

X-Ray Diffraction Plots

- □ Undoped and low concentration Zr doped thin film exhibited most intense peak at 2θ = 35.6° showing the dominance of 110 plane of α -Fe₂O₃ while at higher doping concentration intensity of peak at 2θ=33.4°, corresponding to reflection 104 started dominating.
- □ Average crystallite size calculate using 110 peak of XRD data decrease from ~51 nm for undoped to ~22 nm for 10.0% Zr doped α -Fe₂O₃

Characterization Cont..... UV-Vis Absorption

□ Value of absorbance was observed to increase minutely for the samples doped with Zr at 1.0% and 2.0% doping level, but at higher concentration of doping it was found to decrease.

□ The values of band gap was observed to increased from 1.9 eV for undoped to 2.0 eV for 10.0% Zr doped samples.

Characterization Cont.....

SEM: Morphology

- □ FE-SEM images obtained for all undoped and Zr-doped α -Fe₂O₃ films exhibited porous surface structure with worm like irregular grains
- □ With the increase in Zr doping concentration, porosity of the film was observed to decrease, leading to the more densification of the iron oxide structure

PEC Study-----

□ Flat band potential was observed to increase from -0.6 V/SCE for undoped to -0.85 V/SCE for 1.0% Zr doped sample and afterward decreased .

 \Box Donor density was increased from 18.3×10^{19} cm⁻³ for undoped to 27.43×10^{20} cm⁻³ for

1.0% Zr doped sample afterword it decreased.

- □ Doped samples, exhibited better PEC response as compared to undoped sample and 1.0 % Zr-doped α -Fe₂O₃ was identified as best performing photoelectrode.
- This sample exhibited 754μ A/cm² photocurrent at external bias 0.6 V/SCE and 132 μ A/ cm² in no bias condition.
- □A shift of the onset potential for photocurrent to the negative direction, from 0.6 V/SCE for undoped to -0.32 V/SCE for 1.0 % Zr doped sample

- □ Effect of Zr doping on photoelectrochemical activity of α -Fe₂O₃ has been thoroughly investigated with the supporting characterization results.
- \Box 1.0% Zr-doped α -Fe₂O₃ sample showed significantly good photocurrent densities, which has been attributed to improved carrier density, flat band potential and peculiar morphology with optimum porosity and grain size.
- \Box A negative shift in onset potential offers the more catalytic surface for hydrogen evolution than the undoped α -Fe₂O₃.
- □ It may be concluded that Zr doped nanostructured α -Fe₂O₃ thin film at optimum doping level can be efficiently used for PEC generation of hydrogen.

Thank You for Your Kind Attention