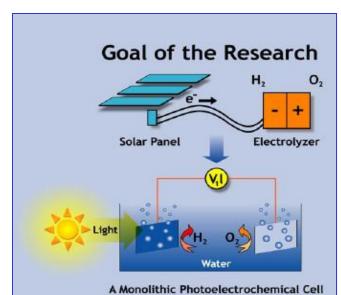
Nanostructured SrTiO₃/WO₃ Heterojunction Thin Films for Efficient Photoelectrochemical Water Splitting for Hydrogen Generation

Surbhi Choudhary

Supervisor: Prof. Sahab Dass

Dept. of Chemistry Dayalbagh Educational Institute Dayalbagh, Agra

Outline


Introduction

Bilayered Thin Films in PEC Water Splitting

Experimental Study

- Preparation
- Characterization
- PEC Study

Results & Conclusion

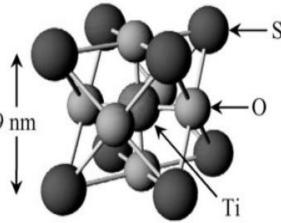
Bilayered Photoelectrodes possess:

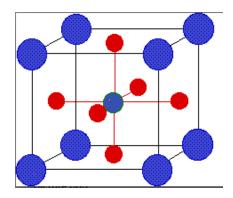
- > Better absorption in the visible region.
- Effective separation of charge carriers.
- Inbuilt electric field at the interface, reduces recombination of charge carriers.
- Applied external bias promotes transfer and separation of photogenerated charge carriers.

Why SrTiO₃ and WO₃?

Strontium Titanate (SrTiO₃) [Eg :- ~ 3.5 eV] Advantages:

- > Remarkable stability in strong acidic/alkaline solutions.
- Large negative flatband potential (V_{fb}= -0.2V), due to which electrolysis of water is possible without any applied bias. 0.39 nm
- Properly aligned band edges with the redox level of water <u>Problem</u>: Low photoconversion efficiency due to large band gap and high resistivity.

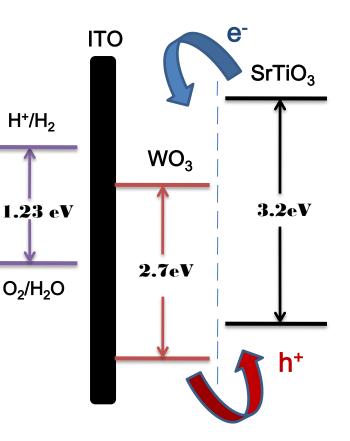

Tungsten Oxide (WO₃) [Eg :- ~ 2.7 eV]


Advantages:

- Basically n-type in nature due to presence of oxygen vacancies within the material.
- Favorable transport properties
- Chemically inert and Photostable

Problem: Non optimal band-edge alignment of conduction

band with redox potential of water.



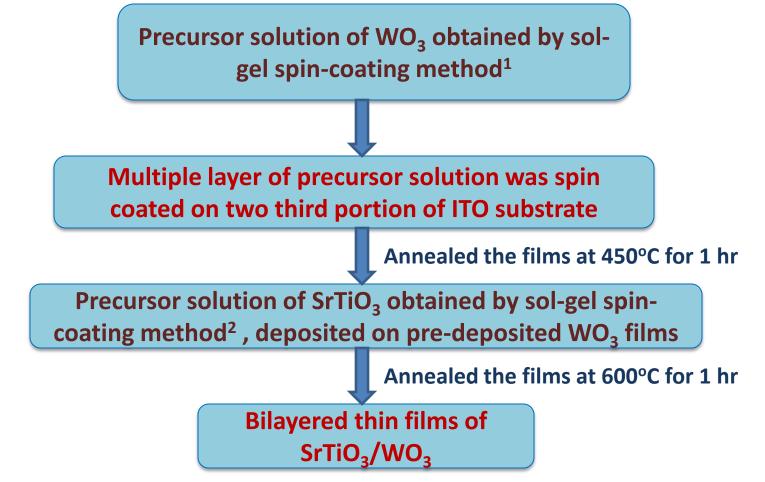
> Bilayered semiconductors in this study, typically composed of two semiconductors, one with a wide band gap (SrTiO₃) and another with a moderate band gap (WO₃).

>WO₃ is responsible for sensitizing SrTiO₃ semiconductor through hole injection.

>The energy layers in the $SrTiO_3/WO_3$ semiconductor can cover visible spectrum thereby offering synergistic effect.

➢Inbuilt electric field at the SrTiO₃/WO₃ heterojunction facilitates charge carrier transfer easily across the interface of the heterojunction.

Energy band diagram of SrTiO₃/WO₃ Heterojunction on ITO substrate


> Preparation of Bilayered $SrTiO_3/WO_3$ thin film:

Sol-gel spin-coating Technique

Characterization Techniques:
X-ray Diffraction (XRD)
UV-Visible Absorption Spectrophotometery
Scanning Electron Microscopy (SEM)

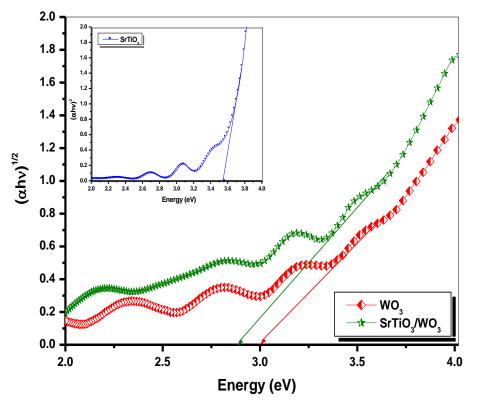
Photoelectrochemical (PEC) Study on Bilayered thin film

Optimizing Parameters of the Study: No. of layers of the two materials or Thickness

1. Luo et al, J. Phys. D: Appl. Phys. 40 (2007) 1091–1096.

2. Solanki et al, Int. J of Hydrogen Energy 36 (2011) 5236-5245.

*:Substrate ∆:WO, o:SrTiO [112] Θ :SrWO SrTiO,/WO, **O** [200] * 0© [204] Intensity (a.u.) [220] [200] Θ* SrTiO_ [110] [111] o [211] * o [200] 0 WO, [001] [111] [201] [220] * [002] 20 30 40 50 60 2θ (Degree)


XRD pattern of Tungsten Oxide, Strontium Titanate and Bilayered (SrTiO₃/WO₃) thin films Films are crystalline in nature.

✤XRD pattern for SrTiO₃ and WO₃ confirmed the cubic and orthorhombic phase respectively.

Average particle size of
SrTiO₃ and WO₃ was 45 nm and
39 nm respectively.

***** SrWO₄ in Bilayered films: due to the diffusion of Ti⁴⁺ (0.605 Å) and W⁶⁺ (0.60 Å) ions at the interface. Similar ionic radii making easy substitution of ions at the interface.

Tauc plot of Tungsten Oxide and Bilayered (SrTiO₃/WO₃) thin films. Inset shows Tauc plot for Strontium Titanate.

Mode of transition for : -

> SrTiO₃ - Direct nature $((\alpha h \upsilon)^2$ versus hu is linear)

> WO₃ & Bilayered films - Indirect nature ($(\alpha h \upsilon)^{1/2}$ versus h υ is linear)

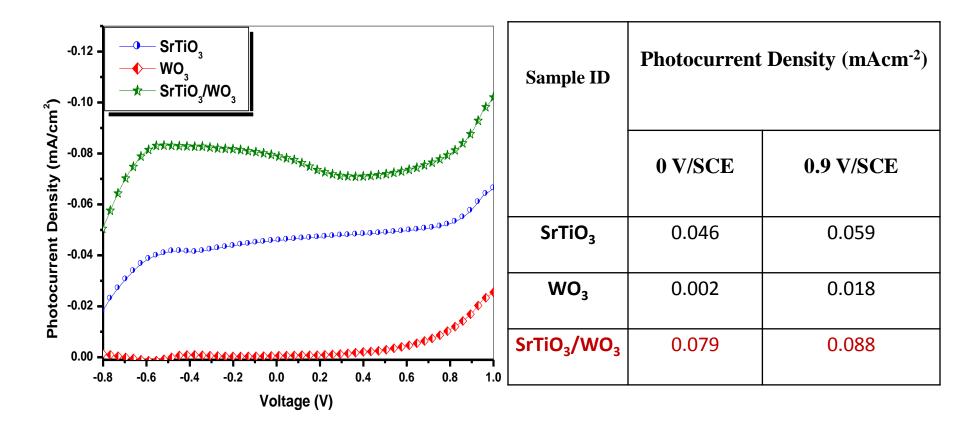
Sample ID	Band Gap (eV)
SrTiO ₃	3.52
WO ₃	2.98
SrTiO ₃ / WO ₃	2.87

Surface Morphology

200 nm Mag = 60.00 K X EHT = 10.00 kV Date :3 Oct 2011 ZEINS Time :11:08:37 WD = 9 mmSignal A = InLens

FE-SEM image of SrTiO₃/WO₃

Homogeneous WO₃ film deposited on ITO substrate.


➢ Good film-to-substrate adhesion of WO₃ film was observed.

> Rough surface with aggregation of grains is shown in upper $SrTiO_3$ film.

>SrTiO₃ layer shows porous structure that may be beneficial for the diffusion of electrolytes and the effective scattering of incident light.

I-V Characteristics

Photocurrent density versus applied potential curve for Strontium titanate, Tungsten oxide and Bilayered thin film.

> Maximum Photocurrent density of $SrTiO_3/WO_3$ Bilayered films = 0.079 mA/cm² at 0 V/SCE, which is approx. two times higher than that of $SrTiO_3$ (0.046 mA/cm²) and much higher than that of WO_3 (0.002 mA/cm²) at zero bias.

> Increase in absorbance of WO_3 towards visible region or red shift from 420 nm to 432 nm was observed.

>The nanostructured porous morphology of upper most $SrTiO_3$ layer provided more surface area for interaction with electrolyte (increased liquid-semiconductor contact area).

>The increase in photocurrent of $SrTiO_3/WO_3$ is attributed to increased absorption and improved charge separation across the interface of two oxide layers leading toward the reduced combination of photogenerated charge carriers.

Thank You